Skip to main content
Top
Published in: Colloid and Polymer Science 4/2013

01-04-2013 | Original Contribution

Porous “sponge-like” anatase TiO2 via polymer templates: synthesis, characterization, and performance as a light-scattering material

Authors: Lukasz Szymanski, Praveen Surolia, Owen Byrne, K. Ravindranathan Thampi, Cosima Stubenrauch

Published in: Colloid and Polymer Science | Issue 4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The synthesis of porous “sponge-like” TiO2 via a polymer gel coating technique is presented. The experimental procedure involves the preparation of a gelled polymerizable microemulsion. The polymerization of the latter leads to porous poly-N-isopropylacrylamide which forms a hydrogel in the presence of water. Via solvent exchange, a suitable TiO2 precursor is infiltrated into this structure after which its in situ hydrolysis is triggered to form porous amorphous TiO2. The subsequent calcination step allows the removal of the polymer template and the transformation of amorphous TiO2 into porous, crystalline anatase with domain sizes ranging from 200 to 250 nm. As a means of verification and proof of concept, this material is tested as light-scattering layer in dye-sensitized solar cells (DSSC), and it is found that the resulting solar cell performance is comparable to commercially available TiO2. However, an increased tendency to form rutile during DSSC fabrication was noticed when compared to commercial TiO2. As there is a large potential for optimizing the synthesis, the proposed procedure is a promising route towards porous TiO2 that performs significantly better as scattering layer in light-harvesting and optical devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The main difference between the gelled microemulsions studied previously and those studied here was the type of oil and the amount of monomer. However, changing the composition led to the same total surfactant concentration required to solubilize equal amounts of water and oil, namely 12 wt%. As the domain size mainly depends on the total surfactant concentration, it is justified to say that the domain size of the present system also is 22 ± 2 nm.
 
Literature
1.
go back to reference Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRef Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRef
2.
go back to reference Attard GS, Edgar M, Göltner CG (1998) Inorganic nanostructures from lyotropic liquid crystal phases. Acta Mater 46:751–758CrossRef Attard GS, Edgar M, Göltner CG (1998) Inorganic nanostructures from lyotropic liquid crystal phases. Acta Mater 46:751–758CrossRef
3.
go back to reference Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585CrossRef Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585CrossRef
4.
go back to reference Coakley KM, McGehee MD (2003) Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. App Phys Lett 83:3380–3382CrossRef Coakley KM, McGehee MD (2003) Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. App Phys Lett 83:3380–3382CrossRef
5.
go back to reference Caruso RA, Giersig M, Willig F, Antonietti M (1998) Porous coral-like TiO2 structures produced by templating polymer gels. Amer Chem Soc 14:6333–6336 Caruso RA, Giersig M, Willig F, Antonietti M (1998) Porous coral-like TiO2 structures produced by templating polymer gels. Amer Chem Soc 14:6333–6336
6.
go back to reference Caruso RA, Antonietti M, Giersig M, Hentze HP, Jia J (2001) Modification of TiO2 network structures using a polymer gel coating technique. Chem Mater 13:1114–1123CrossRef Caruso RA, Antonietti M, Giersig M, Hentze HP, Jia J (2001) Modification of TiO2 network structures using a polymer gel coating technique. Chem Mater 13:1114–1123CrossRef
7.
go back to reference Schattka JH, Wong EHM, Antonietti M, Caruso RA (2006) Sol-gel templating of membranes to form thick, porous titania, titania/zirconia and titania/silica films. J Mater Chem 16:1414–1420CrossRef Schattka JH, Wong EHM, Antonietti M, Caruso RA (2006) Sol-gel templating of membranes to form thick, porous titania, titania/zirconia and titania/silica films. J Mater Chem 16:1414–1420CrossRef
8.
go back to reference Lechmann MC, Kessler D, Gutmann JS (2009) Functional Templated for hybrid materials with orthogonal functionality. Langmuir 25:10202–10208CrossRef Lechmann MC, Kessler D, Gutmann JS (2009) Functional Templated for hybrid materials with orthogonal functionality. Langmuir 25:10202–10208CrossRef
9.
go back to reference Crossland EJW, Kamperman M, Nedelcu M, Ducati C, Wiesner U, Smilgies DM, Toombes GES, Hillmyer MA, Ludwigs S, Steiner U, Snaith HJ (2009) A bicontinuous double gyroid hybrid solar cell. Nano Lett 9:2807–2812CrossRef Crossland EJW, Kamperman M, Nedelcu M, Ducati C, Wiesner U, Smilgies DM, Toombes GES, Hillmyer MA, Ludwigs S, Steiner U, Snaith HJ (2009) A bicontinuous double gyroid hybrid solar cell. Nano Lett 9:2807–2812CrossRef
10.
go back to reference Crossland EJW, Nedelcu M, Ducati C, Ludwigs S, Hillmyer MA, Steiner U, Snaith HJ (2009) Block copolymer morphologies in dye-sensitized solar cells: probing the photovoltaic structure-function relation. Nano Lett 9:2813–2819CrossRef Crossland EJW, Nedelcu M, Ducati C, Ludwigs S, Hillmyer MA, Steiner U, Snaith HJ (2009) Block copolymer morphologies in dye-sensitized solar cells: probing the photovoltaic structure-function relation. Nano Lett 9:2813–2819CrossRef
11.
go back to reference Stubenrauch C, Sottmann T (2009) Phase behaviour, interfacial tension and microstructure of microemulsions. In: Microemulsions: background, new concepts, applications, perspectives. Wiley, Oxford, 1–47. Stubenrauch C, Sottmann T (2009) Phase behaviour, interfacial tension and microstructure of microemulsions. In: Microemulsions: background, new concepts, applications, perspectives. Wiley, Oxford, 1–47.
12.
go back to reference Stubenrauch C, Strey R (2009) Future challenges. In: Microemulsions: background, new concepts, applications, perspectives. Wiley, Oxford, 345–366. Stubenrauch C, Strey R (2009) Future challenges. In: Microemulsions: background, new concepts, applications, perspectives. Wiley, Oxford, 345–366.
13.
go back to reference Moriguchi I, Katsuki Y, Yamada H, Kudo T, Nishimi T (2004) Bicontinuous microemulsion-aided synthesis of mesoporous TiO2. Chem Lett 33:1102–1103CrossRef Moriguchi I, Katsuki Y, Yamada H, Kudo T, Nishimi T (2004) Bicontinuous microemulsion-aided synthesis of mesoporous TiO2. Chem Lett 33:1102–1103CrossRef
14.
15.
go back to reference Stubenrauch C, Tessendorf R, Strey R, Lynch I, Dawson KA (2007) Gelled polymerizable microemulsions. 1. Phase behavior. Langmuir 23:7730–7737CrossRef Stubenrauch C, Tessendorf R, Strey R, Lynch I, Dawson KA (2007) Gelled polymerizable microemulsions. 1. Phase behavior. Langmuir 23:7730–7737CrossRef
16.
go back to reference Stubenrauch C, Tessendorf R, Salvati A, Topgaard D, Sottmann T, Strey R, Lynch I (2008) Gelled polymerizable microemulsions. 2. Microstructure. Langmuir 24:8473–8482CrossRef Stubenrauch C, Tessendorf R, Salvati A, Topgaard D, Sottmann T, Strey R, Lynch I (2008) Gelled polymerizable microemulsions. 2. Microstructure. Langmuir 24:8473–8482CrossRef
17.
go back to reference Tessendorf R (2009) Microemulsions as templates for high surface area polymers, Dissertation, University of Cologne. Tessendorf R (2009) Microemulsions as templates for high surface area polymers, Dissertation, University of Cologne.
18.
go back to reference Brizard A, Stuart M, van Bommel K, Friggeri A, de Jong M, van Esch J (2008) Preparation of nanostructures by orthogonal self-assembly of hydrogelators and surfactants. Angew Chem Int Ed 47:2063–2066CrossRef Brizard A, Stuart M, van Bommel K, Friggeri A, de Jong M, van Esch J (2008) Preparation of nanostructures by orthogonal self-assembly of hydrogelators and surfactants. Angew Chem Int Ed 47:2063–2066CrossRef
19.
go back to reference Raj WRP, Sasthav M, Cheung HM (1995) Polymerization of single-phase microemulsions: dependence of polymer morphology on microemulsion structure. Polymer 36:2637–2646CrossRef Raj WRP, Sasthav M, Cheung HM (1995) Polymerization of single-phase microemulsions: dependence of polymer morphology on microemulsion structure. Polymer 36:2637–2646CrossRef
20.
go back to reference Hentze HP, Co CC, McKelvey CA, Kaler EW (2003) Templating vesicles, microemulsions, and lyotropic mesophases by organic polymerization processes. Top Curr Chem 226:197–223CrossRef Hentze HP, Co CC, McKelvey CA, Kaler EW (2003) Templating vesicles, microemulsions, and lyotropic mesophases by organic polymerization processes. Top Curr Chem 226:197–223CrossRef
21.
go back to reference Ferber J, Luther J (1998) Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol Energy Mater Sol Cells 54:265–275CrossRef Ferber J, Luther J (1998) Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol Energy Mater Sol Cells 54:265–275CrossRef
22.
go back to reference Hore S, Vetter C, Kern R, Smit H (2006) Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:1176–1188CrossRef Hore S, Vetter C, Kern R, Smit H (2006) Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:1176–1188CrossRef
23.
go back to reference Park NG, van de Lagemat J, Frank AJ (2000) Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J Phys Chem B 104:8989–8994CrossRef Park NG, van de Lagemat J, Frank AJ (2000) Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J Phys Chem B 104:8989–8994CrossRef
24.
go back to reference Wang P, Zakeeruddin SM, Comte P, Chauvet R, Baker RH, Grätzel M (2003) Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 Nanocrystals. J Phys Chem B 107:14336–14341CrossRef Wang P, Zakeeruddin SM, Comte P, Chauvet R, Baker RH, Grätzel M (2003) Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 Nanocrystals. J Phys Chem B 107:14336–14341CrossRef
25.
go back to reference Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851CrossRef Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851CrossRef
26.
go back to reference Thampi KR, Liska P, Wang P, Zakeeruddin SM, Schmidt-Mende L, Klein C, Comte P, Grätzel M (2005) Proceedings of the 20th european photovoltaic solar energy conference. WIP-Renewable Energies, Munich Thampi KR, Liska P, Wang P, Zakeeruddin SM, Schmidt-Mende L, Klein C, Comte P, Grätzel M (2005) Proceedings of the 20th european photovoltaic solar energy conference. WIP-Renewable Energies, Munich
27.
go back to reference Thampi KR (2010) Mesoporous oxide layers applied to advanced energy conversion methods. In: Nanoparticles: synthesis, characterization and applications. American Scientific, USA. Thampi KR (2010) Mesoporous oxide layers applied to advanced energy conversion methods. In: Nanoparticles: synthesis, characterization and applications. American Scientific, USA.
28.
go back to reference Ishimaru A (1978) Wave propagation and scattering in random media. Oxford University Press, New York Ishimaru A (1978) Wave propagation and scattering in random media. Oxford University Press, New York
29.
go back to reference Rothenberger G, Comte P, Grätzel M (1999) A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol Energy Mater Sol Cells 58:321–336CrossRef Rothenberger G, Comte P, Grätzel M (1999) A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol Energy Mater Sol Cells 58:321–336CrossRef
30.
go back to reference Hore S, Nitz P, Vetter C, Prahl C, Niggemann M, Kern R (2005) Scattering spherical voids in nanocrystalline TiO2—enhancement of efficiency in dye-sensitized solar cells. Chem Comm 15:2011–2013CrossRef Hore S, Nitz P, Vetter C, Prahl C, Niggemann M, Kern R (2005) Scattering spherical voids in nanocrystalline TiO2—enhancement of efficiency in dye-sensitized solar cells. Chem Comm 15:2011–2013CrossRef
31.
go back to reference Papoutsi D, Panagiotis L, Panagiotis Y, Koutsoukos P (1994) Sol-gel Derived TiO2 Microemulsion gels and coatings. Langmuir 10:16841689 Papoutsi D, Panagiotis L, Panagiotis Y, Koutsoukos P (1994) Sol-gel Derived TiO2 Microemulsion gels and coatings. Langmuir 10:16841689
32.
go back to reference Kroon JM, Bakker NJ, Smit HJ, Liska P, Thampi KR, Wang P, Zakeeruddin SM, Grätzel M, Hinsch A, Hore S, Würfel S, Sastrawan R, Durrant JR, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch GE (2007) Nanocrystalline dye-sensitized solar cells having maximum performance. Prog Photovolt: Res Appl 15:1–18CrossRef Kroon JM, Bakker NJ, Smit HJ, Liska P, Thampi KR, Wang P, Zakeeruddin SM, Grätzel M, Hinsch A, Hore S, Würfel S, Sastrawan R, Durrant JR, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch GE (2007) Nanocrystalline dye-sensitized solar cells having maximum performance. Prog Photovolt: Res Appl 15:1–18CrossRef
33.
go back to reference Ito S, Murakami TN, Comte P, Liska P, Grätzel C, Nazeeruddin MK, Grätzel M (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619CrossRef Ito S, Murakami TN, Comte P, Liska P, Grätzel C, Nazeeruddin MK, Grätzel M (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619CrossRef
34.
go back to reference Kuang D, Klein C, Ito S, Moser JE, Humphry-Baker R, Evans N, Duriaux F, Grätzel C, Zakeeruddin SM, Grätzel M (2007) High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv Mater 19:1133–1137CrossRef Kuang D, Klein C, Ito S, Moser JE, Humphry-Baker R, Evans N, Duriaux F, Grätzel C, Zakeeruddin SM, Grätzel M (2007) High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv Mater 19:1133–1137CrossRef
35.
go back to reference Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Pechy P, Grätzel M (2005) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitized solar cells. Prog Photovolt: Res Appl 15:603–612CrossRef Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Pechy P, Grätzel M (2005) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitized solar cells. Prog Photovolt: Res Appl 15:603–612CrossRef
36.
go back to reference Chen CY, Wang M, Li JY, Pootrakulchote N, Alibabaei L, C-h N, Decoppet JD, Tsai JH, Grätzel C, Wu CG, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103–3109CrossRef Chen CY, Wang M, Li JY, Pootrakulchote N, Alibabaei L, C-h N, Decoppet JD, Tsai JH, Grätzel C, Wu CG, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103–3109CrossRef
37.
go back to reference Barringer EA, Bowen HK (1985) High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir 1:414–420CrossRef Barringer EA, Bowen HK (1985) High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir 1:414–420CrossRef
38.
go back to reference Thampi KR, Bessho T, Gao F, Zakeeruddin SM, Wang P, Grätzel M (2008) Proceedings of the 23rd European photovoltaic solar energy conference. WIP-Renewable Energies, Munich Thampi KR, Bessho T, Gao F, Zakeeruddin SM, Wang P, Grätzel M (2008) Proceedings of the 23rd European photovoltaic solar energy conference. WIP-Renewable Energies, Munich
39.
go back to reference Gallardo Amores JM, Escribano VS, Buscab G (1995) Anatase crystal growth and phase transformation to rutile in high-area TiO2, MoO3-TiO2 and other TiO2-supported oxide catalytic systems. J Mater Chem 5:1245–1249CrossRef Gallardo Amores JM, Escribano VS, Buscab G (1995) Anatase crystal growth and phase transformation to rutile in high-area TiO2, MoO3-TiO2 and other TiO2-supported oxide catalytic systems. J Mater Chem 5:1245–1249CrossRef
40.
go back to reference Jamieson JC, Olinger B (1965) High-pressure polymorphism of titanium dioxide. Science 161:893–895CrossRef Jamieson JC, Olinger B (1965) High-pressure polymorphism of titanium dioxide. Science 161:893–895CrossRef
41.
go back to reference Brillet J, Grätzel M, Sivula K (2010) Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett 10:4155–4160CrossRef Brillet J, Grätzel M, Sivula K (2010) Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett 10:4155–4160CrossRef
Metadata
Title
Porous “sponge-like” anatase TiO2 via polymer templates: synthesis, characterization, and performance as a light-scattering material
Authors
Lukasz Szymanski
Praveen Surolia
Owen Byrne
K. Ravindranathan Thampi
Cosima Stubenrauch
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
Colloid and Polymer Science / Issue 4/2013
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-012-2792-x

Other articles of this Issue 4/2013

Colloid and Polymer Science 4/2013 Go to the issue

Premium Partners