Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 1-2/2020

17-02-2020 | ORIGINAL ARTICLE

Pose-dependent modal behavior of a milling robot in service

Authors: Asia Maamar, Vincent Gagnol, Thien-Phu Le, Laurent Sabourin

Published in: The International Journal of Advanced Manufacturing Technology | Issue 1-2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The introduction of industrial robots in the machining field represents a large saving in cost and time, given their advantages in terms of high flexibility in a large workspace and the complex machining operations that they can perform compared to a CNC machine tool. However, machining robots are significantly less rigid than machine tools, and present more variability in their dynamic behavior within their workspaces than CNC machine tools. Their considerable lack of rigidity is still a major restriction for precision tasks, and attaining the precision required of a machining robot remains a challenging issue. Thus, a modal parameters analysis of machining robots under real machining conditions, is crucial for a reliable evaluation of its dynamic behavior. Robot configurations can then be adapted to ensure stability conditions along the machining trajectory. The main innovation of this paper is the modal parameter monitoring of a machining robot, in machining conditions, as regards its position and wrist configuration within its workspace, for a more accurate and reliable control of its dynamic behavior. Modal parameters are identified during machining operations using the transmissibility function–based (TFB) method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abele E, Eberhard, Weigold M, Rothenbucher S, Tefan (2017) Modeling and identification of an industrial robot for machining applications. CIRP Ann 56:387–390CrossRef Abele E, Eberhard, Weigold M, Rothenbucher S, Tefan (2017) Modeling and identification of an industrial robot for machining applications. CIRP Ann 56:387–390CrossRef
2.
go back to reference Lejun C, Melkote S-N (2017) Effect of robot dynamics on the machining forces in robotic milling. Procedia Manuf 10:486–496CrossRef Lejun C, Melkote S-N (2017) Effect of robot dynamics on the machining forces in robotic milling. Procedia Manuf 10:486–496CrossRef
3.
go back to reference Ma L, Melkote SN, Morehouse JB, Castle JB, Fonda JW, Johnson MA (2012) Thin-film PVDF sensor-based monitoring of cutting forces in peripheral end milling. J Dyn Syst Measur Control, 134 Ma L, Melkote SN, Morehouse JB, Castle JB, Fonda JW, Johnson MA (2012) Thin-film PVDF sensor-based monitoring of cutting forces in peripheral end milling. J Dyn Syst Measur Control, 134
4.
go back to reference Portman VT, Chapsky VS, Shneor Y, Ayalon E (2015) Machine stiffness rating: characterization and evaluation in design stage. Procedia CIRP 36:111–116CrossRef Portman VT, Chapsky VS, Shneor Y, Ayalon E (2015) Machine stiffness rating: characterization and evaluation in design stage. Procedia CIRP 36:111–116CrossRef
5.
go back to reference Bisu, Claudiu F, Knevez J-Y, Darnis P, Laheurte R, Gérard A (2009) New method to characterize a machining system: application in turning. Int J Mater Form 2:93–105CrossRef Bisu, Claudiu F, Knevez J-Y, Darnis P, Laheurte R, Gérard A (2009) New method to characterize a machining system: application in turning. Int J Mater Form 2:93–105CrossRef
6.
go back to reference Maamar A, Bouzgarrou B-C, Gagnol V, Fathallah R (2017) Time domain stability analysis for machining processes. Adv Acoust Vib, 77–88 Maamar A, Bouzgarrou B-C, Gagnol V, Fathallah R (2017) Time domain stability analysis for machining processes. Adv Acoust Vib, 77–88
7.
go back to reference Mousavi S, Gagnol V, Bouzgarrou B-C, Ray P (2018) Stability optimization in robotic milling through the control of functional redundanciess. Robot Comput-Integr Manuf, 181–192CrossRef Mousavi S, Gagnol V, Bouzgarrou B-C, Ray P (2018) Stability optimization in robotic milling through the control of functional redundanciess. Robot Comput-Integr Manuf, 181–192CrossRef
8.
go back to reference Mejri S, Gagnol V, Le T-P, Ray P, Paultre P (2016) Dynamic characterization of machining robot and stability analysis. Int J Adv Manuf Technol 82:351–359CrossRef Mejri S, Gagnol V, Le T-P, Ray P, Paultre P (2016) Dynamic characterization of machining robot and stability analysis. Int J Adv Manuf Technol 82:351–359CrossRef
9.
go back to reference Chen C, Pengu F, Yan R, Fan Z, Li Y, Wei D (2018) Posture-dependent stability prediction of a milling industrial robot based on inverse distance weighted method. Procedia Manuf 17:993–1000CrossRef Chen C, Pengu F, Yan R, Fan Z, Li Y, Wei D (2018) Posture-dependent stability prediction of a milling industrial robot based on inverse distance weighted method. Procedia Manuf 17:993–1000CrossRef
10.
go back to reference Bisu C, Cherif M, Gerard A, K’nevez J-Y (2012) Dynamic behavior analysis for a six axis industrial machining robot. Adv Mater Res 423:65–76CrossRef Bisu C, Cherif M, Gerard A, K’nevez J-Y (2012) Dynamic behavior analysis for a six axis industrial machining robot. Adv Mater Res 423:65–76CrossRef
11.
go back to reference Sabourin L, Subrin K, Cousturier R, Gogu G, Mezouar Y (2015) Redundancy-based optimization approach to optimize robotic cell behaviour: application to robotic machining. Industr Robot: Int J 42:167–178CrossRef Sabourin L, Subrin K, Cousturier R, Gogu G, Mezouar Y (2015) Redundancy-based optimization approach to optimize robotic cell behaviour: application to robotic machining. Industr Robot: Int J 42:167–178CrossRef
12.
go back to reference Orlowitz E, Brandt A (2017) Comparison of experimental and operational modal analysis on a laboratory test plate. Measurement 102:121–130CrossRef Orlowitz E, Brandt A (2017) Comparison of experimental and operational modal analysis on a laboratory test plate. Measurement 102:121–130CrossRef
13.
go back to reference Tunc L, Shaw J (2016) Experimental study on investigation of dynamics of hexapod robot for mobile machining. Int J Adv Manuf Technol 84:817–830 Tunc L, Shaw J (2016) Experimental study on investigation of dynamics of hexapod robot for mobile machining. Int J Adv Manuf Technol 84:817–830
14.
go back to reference Gagnol V, Le T-P, Ray P (2011) Modal identification of spindle-tool unit in high-speed machining. Mech Syst Signal Process 25:2388–2398CrossRef Gagnol V, Le T-P, Ray P (2011) Modal identification of spindle-tool unit in high-speed machining. Mech Syst Signal Process 25:2388–2398CrossRef
15.
go back to reference Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press
16.
go back to reference Zaghbani I, Songmene V (2009) Estimation of machine tool dynamic parameters during machining operation through operational modal analysis. Int J Mach Tools Manuf 49:947–957CrossRef Zaghbani I, Songmene V (2009) Estimation of machine tool dynamic parameters during machining operation through operational modal analysis. Int J Mach Tools Manuf 49:947–957CrossRef
17.
go back to reference Maamar A, Gagnol V, Le T-P, Sabourin L (2019) Modal identification of a machine tool structure during machining operations. Int J Adv Manuf Technol, 1–12 Maamar A, Gagnol V, Le T-P, Sabourin L (2019) Modal identification of a machine tool structure during machining operations. Int J Adv Manuf Technol, 1–12
18.
go back to reference Devriendt C, Guillaume P (2008) Identification of modal parameters from transmissibility measurements. J Sound Vibr 314:343–356CrossRef Devriendt C, Guillaume P (2008) Identification of modal parameters from transmissibility measurements. J Sound Vibr 314:343–356CrossRef
19.
go back to reference Devriendt C, Guillaume P (2007) The use of transmissibility measurements in output-only modal analysis. Mech Syst Signal Process 21:2689–2696CrossRef Devriendt C, Guillaume P (2007) The use of transmissibility measurements in output-only modal analysis. Mech Syst Signal Process 21:2689–2696CrossRef
20.
go back to reference Peeters B, Van der Auweraer H, et al (2005) PolyMAX: a revolution in operational modal analysis. In: 1st International operational modal analysis conference, Copenhagen, pp 26–27 Peeters B, Van der Auweraer H, et al (2005) PolyMAX: a revolution in operational modal analysis. In: 1st International operational modal analysis conference, Copenhagen, pp 26–27
21.
go back to reference Brinker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of 18th international modal analysis conference Brinker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of 18th international modal analysis conference
22.
go back to reference Antoni J (2005) Blind separation of vibration components: principles and demonstrations. Mech Syst Signal Process 19:1166– 1180CrossRef Antoni J (2005) Blind separation of vibration components: principles and demonstrations. Mech Syst Signal Process 19:1166– 1180CrossRef
23.
go back to reference Antoni J (2006) The spectral kurtosis: a useful tool for characterizing non-stationary signals. Mech Syst Signal Process 20:282–307CrossRef Antoni J (2006) The spectral kurtosis: a useful tool for characterizing non-stationary signals. Mech Syst Signal Process 20:282–307CrossRef
24.
go back to reference Brincker R, Andersen P, Moller N (2000) An indicator for separation of structural and harmonic modes in output-only modal testing. In: Proceeding of the 18th international modal analysis conference Brincker R, Andersen P, Moller N (2000) An indicator for separation of structural and harmonic modes in output-only modal testing. In: Proceeding of the 18th international modal analysis conference
25.
go back to reference Jacobsen N-J, Andersen P, Brincker R (2007) Eliminating the influence of harmonic components in operational modal analysis. In: Proceedings of the 25th international modal analysis conference Jacobsen N-J, Andersen P, Brincker R (2007) Eliminating the influence of harmonic components in operational modal analysis. In: Proceedings of the 25th international modal analysis conference
26.
go back to reference Jacobsen N-J, Andersen P, Brincker R (2007) Using EFDD as a robust technique for deterministic excitation in operational modal analysis. In: International operational modal analysis conference, pp 193–200 Jacobsen N-J, Andersen P, Brincker R (2007) Using EFDD as a robust technique for deterministic excitation in operational modal analysis. In: International operational modal analysis conference, pp 193–200
27.
go back to reference Le T-P, Argoul P (2015) Distinction between harmonic and structural components in ambient excitation tests using the time-frequency domain decomposition technique. Mech Syst Signal Process 52:29–45CrossRef Le T-P, Argoul P (2015) Distinction between harmonic and structural components in ambient excitation tests using the time-frequency domain decomposition technique. Mech Syst Signal Process 52:29–45CrossRef
Metadata
Title
Pose-dependent modal behavior of a milling robot in service
Authors
Asia Maamar
Vincent Gagnol
Thien-Phu Le
Laurent Sabourin
Publication date
17-02-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 1-2/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-04974-y

Other articles of this Issue 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Go to the issue

Premium Partners