Skip to main content
Top
Published in: BIT Numerical Mathematics 2/2022

06-09-2021

Positivity-preserving symplectic methods for the stochastic Lotka–Volterra predator-prey model

Authors: Jialin Hong, Lihai Ji, Xu Wang, Jingjing Zhang

Published in: BIT Numerical Mathematics | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, positivity-preserving symplectic numerical approximations are investigated for the 2d-dimensional stochastic Lotka–Volterra predator-prey model driven by multiplicative noises, which plays an important role in ecosystem. The model is shown to possess both a unique positive solution and a stochastic symplectic geometric structure, and hence can be interpreted as a stochastic Hamiltonian system. To inherit the intrinsic biological characteristic of the original system, a class of stochastic Runge–Kutta methods is presented, which is proved to preserve positivity of the numerical solution and possess the discrete stochastic symplectic geometric structure as well. Uniform boundedness of both the exact solution and the numerical one are obtained, which are crucial to derive the conditions for convergence order one in the \(\mathbb {L}^1(\varOmega )\)-norm. Numerical examples illustrate the stability and structure-preserving property of the proposed methods over long time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arnold, L., Horsthemke, W., Stucki, J.W.: The influence of external real and white noise on the Lotka–Volterra model. Biomed. J. 21(5), 451–471 (1979)MathSciNetMATH Arnold, L., Horsthemke, W., Stucki, J.W.: The influence of external real and white noise on the Lotka–Volterra model. Biomed. J. 21(5), 451–471 (1979)MathSciNetMATH
2.
go back to reference Chen, C., Hong, J.: Symplectic Runge–Kutta semidiscretization for stochastic Schrödinger equation. SIAM J. Numer. Anal. 54(4), 2569–2593 (2016)MathSciNetCrossRef Chen, C., Hong, J.: Symplectic Runge–Kutta semidiscretization for stochastic Schrödinger equation. SIAM J. Numer. Anal. 54(4), 2569–2593 (2016)MathSciNetCrossRef
3.
go back to reference Chen, C., Hong, J., Jin, D., Sun, L.: Asymptotically-preserving large deviations principles by stochastic symplectic methods for a linear stochastic oscillator. SIAM J. Numer. Anal. 59(1), 32–59 (2021)MathSciNetCrossRef Chen, C., Hong, J., Jin, D., Sun, L.: Asymptotically-preserving large deviations principles by stochastic symplectic methods for a linear stochastic oscillator. SIAM J. Numer. Anal. 59(1), 32–59 (2021)MathSciNetCrossRef
4.
go back to reference Chessa, S., Yashima, H.F.: In: Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (ed.) The stochastic equation of predator-prey population dynamics, vol. 5, pp. 789–804. (2002) Chessa, S., Yashima, H.F.: In: Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (ed.) The stochastic equation of predator-prey population dynamics, vol. 5, pp. 789–804. (2002)
5.
go back to reference De Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96(4), 733–770 (2004)MathSciNetCrossRef De Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96(4), 733–770 (2004)MathSciNetCrossRef
6.
go back to reference Goel, N.S., Maitra, S.C., Montroll, E.W.: Nonlinear Models of Interacting Populations. Academic Press, New York (1971) Goel, N.S., Maitra, S.C., Montroll, E.W.: Nonlinear Models of Interacting Populations. Academic Press, New York (1971)
7.
go back to reference Hong, J., Sun, L., Wang, X.: High order conformal symplectic and ergodic schemes for the stochastic Langevin equation via generating functions. SIAM J. Numer. Anal. 55(6), 3006–3029 (2017)MathSciNetCrossRef Hong, J., Sun, L., Wang, X.: High order conformal symplectic and ergodic schemes for the stochastic Langevin equation via generating functions. SIAM J. Numer. Anal. 55(6), 3006–3029 (2017)MathSciNetCrossRef
8.
go back to reference Hong, J., Wang, X.: Invariant Measures for Stochastic Nonlinear Schrödinger Equations: Numerical Approximations and Symplectic Structures, Lecture Notes in Mathematics 2251, Springer, Singapore (2019) Hong, J., Wang, X.: Invariant Measures for Stochastic Nonlinear Schrödinger Equations: Numerical Approximations and Symplectic Structures, Lecture Notes in Mathematics 2251, Springer, Singapore (2019)
9.
go back to reference Kloeden, P.E., Platen, E., Wright, I.: The approximation of multiple stochastic integrals. Stochastic Anal. Appl. 10(4), 431–441 (1992)MathSciNetCrossRef Kloeden, P.E., Platen, E., Wright, I.: The approximation of multiple stochastic integrals. Stochastic Anal. Appl. 10(4), 431–441 (1992)MathSciNetCrossRef
10.
go back to reference Li, X., Jiang, D., Mao, X.: Population dynamical behavior of Lotka–Volterra system under regime switching. J. Comput. Appl. Math. 232(2), 427–448 (2009)MathSciNetCrossRef Li, X., Jiang, D., Mao, X.: Population dynamical behavior of Lotka–Volterra system under regime switching. J. Comput. Appl. Math. 232(2), 427–448 (2009)MathSciNetCrossRef
11.
12.
go back to reference Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)CrossRef Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)CrossRef
13.
go back to reference Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)CrossRef Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)CrossRef
14.
go back to reference Nguyen, D.H., Yin, G.: Coexistence and exclusion of stochastic competitive Lotka–Volterra models. J. Differ. Equ. 262(3), 1192–1225 (2017)MathSciNetCrossRef Nguyen, D.H., Yin, G.: Coexistence and exclusion of stochastic competitive Lotka–Volterra models. J. Differ. Equ. 262(3), 1192–1225 (2017)MathSciNetCrossRef
15.
go back to reference Rudnicki, R.: Long-time behavior of a stochastic prey-predator model. Stoch. Proc. Appl. 108(1), 93–107 (2003)CrossRef Rudnicki, R.: Long-time behavior of a stochastic prey-predator model. Stoch. Proc. Appl. 108(1), 93–107 (2003)CrossRef
16.
go back to reference Rudnicki, R., Pichor, K.: Influence of stochastic perturbation on prey-predator systems. Math. Biosci. 206, 108–119 (2007)MathSciNetCrossRef Rudnicki, R., Pichor, K.: Influence of stochastic perturbation on prey-predator systems. Math. Biosci. 206, 108–119 (2007)MathSciNetCrossRef
17.
go back to reference Soize, C.: The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. World Scientific Publishing Co. Inc., River Edge (1994)CrossRef Soize, C.: The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. World Scientific Publishing Co. Inc., River Edge (1994)CrossRef
18.
go back to reference Wang, L., Hong, J.: Generating functions for stochastic symplectic methods. Discrete Cont. Dyn. 34(3), 1211–1228 (2014)MathSciNetCrossRef Wang, L., Hong, J.: Generating functions for stochastic symplectic methods. Discrete Cont. Dyn. 34(3), 1211–1228 (2014)MathSciNetCrossRef
19.
go back to reference West, R., Mobilia, M., Rucklidge, A.M.: Survival behavior in the cyclic Lotka–Volterra model with a randomly switching reaction rate. Phys. Rev. E 97, 022406 (2018)CrossRef West, R., Mobilia, M., Rucklidge, A.M.: Survival behavior in the cyclic Lotka–Volterra model with a randomly switching reaction rate. Phys. Rev. E 97, 022406 (2018)CrossRef
Metadata
Title
Positivity-preserving symplectic methods for the stochastic Lotka–Volterra predator-prey model
Authors
Jialin Hong
Lihai Ji
Xu Wang
Jingjing Zhang
Publication date
06-09-2021
Publisher
Springer Netherlands
Published in
BIT Numerical Mathematics / Issue 2/2022
Print ISSN: 0006-3835
Electronic ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-021-00891-y

Other articles of this Issue 2/2022

BIT Numerical Mathematics 2/2022 Go to the issue

Premium Partner