Skip to main content
Top
Published in: Telecommunication Systems 1/2023

21-07-2023

Post-quantum secure authenticated key agreement protocol for wireless sensor networks

Authors: Mrityunjay Singh, Dheerendra Mishra

Published in: Telecommunication Systems | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In today’s digital world, our communication medium has become wireless. The addition of many sensor devices in wireless connection forms a wireless sensor network (WSN). To achieve data security in WSN, an efficient, secure, and authorized communication mechanism is required among remote entities. Many computationally efficient authenticated key agreement (AKA) schemes have been proposed to ensure secure and authorized communication in the pre-quantum era for WSNs. The security of most of these schemes relies on the hardness of either factoring or discrete log problem. Due to Shor’s algorithm, these problems can be solved in polynomial time on any high-scale quantum computer. Hence, the AKA schemes proposed using classical cryptographic schemes will become insecure once the high-scale quantum computer becomes a reality. So, there is a requirement for the construction of new AKA designs which can resist quantum attacks. This article presents a lattice-based AKA for WSN to achieve the goal of post-quantum security and efficiency. The proposed solution is achieved using the computational problem of ring learning with errors (RLWE), where the user establishes authorized and secure communication with sensors. We have demonstrated a formal security analysis of our proposed scheme. The analysis of performance along with a comparative study are also included regarding performance comparison with existing schemes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 22(6), 644–654.CrossRef Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 22(6), 644–654.CrossRef
2.
go back to reference Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring, in: Proceedings 35th annual symposium on foundations of computer science, IEEE, pp. 124–134. Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring, in: Proceedings 35th annual symposium on foundations of computer science, IEEE, pp. 124–134.
3.
go back to reference Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41(2), 303–332.CrossRef Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41(2), 303–332.CrossRef
4.
go back to reference Juang, W.-S. (2006). Efficient user authentication and key agreement in wireless sensor networks. International workshop on information security applications (pp. 15–29). Berlin: Springer. Juang, W.-S. (2006). Efficient user authentication and key agreement in wireless sensor networks. International workshop on information security applications (pp. 15–29). Berlin: Springer.
5.
go back to reference Amin, R., Islam, S. H., Biswas, G., Khan, M. K., Leng, L., & Kumar, N. (2016). Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks. Computer Networks, 101, 42–62.CrossRef Amin, R., Islam, S. H., Biswas, G., Khan, M. K., Leng, L., & Kumar, N. (2016). Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks. Computer Networks, 101, 42–62.CrossRef
6.
go back to reference Simplicio, M. A., Jr., Silva, M. V., Alves, R. C., & Shibata, T. K. (2017). Lightweight and escrow-less authenticated key agreement for the internet of things. Computer Communications, 98, 43–51.CrossRef Simplicio, M. A., Jr., Silva, M. V., Alves, R. C., & Shibata, T. K. (2017). Lightweight and escrow-less authenticated key agreement for the internet of things. Computer Communications, 98, 43–51.CrossRef
7.
go back to reference He, D., Kumar, N., & Chilamkurti, N. (2015). A secure temporal-credential-based mutual authentication and key agreement scheme with pseudo identity for wireless sensor networks. Information Sciences, 321, 263–277.CrossRef He, D., Kumar, N., & Chilamkurti, N. (2015). A secure temporal-credential-based mutual authentication and key agreement scheme with pseudo identity for wireless sensor networks. Information Sciences, 321, 263–277.CrossRef
8.
go back to reference Santos-González, I., Rivero-García, A., Burmester, M., Munilla, J., & Caballero-Gil, P. (2020). Secure lightweight password authenticated key exchange for heterogeneous wireless sensor networks. Information Systems, 88, 101423.CrossRef Santos-González, I., Rivero-García, A., Burmester, M., Munilla, J., & Caballero-Gil, P. (2020). Secure lightweight password authenticated key exchange for heterogeneous wireless sensor networks. Information Systems, 88, 101423.CrossRef
9.
go back to reference Moghadam, M. F., Nikooghadam, M., Jabban, M. A. B., Al-Alishahi, M., Mortazavi, L., & Mohajerzadeh, A. (2020). An efficient authentication and key agreement scheme based on ecdh for wireless sensor network. IEEE Access, 8, 73182–73192.CrossRef Moghadam, M. F., Nikooghadam, M., Jabban, M. A. B., Al-Alishahi, M., Mortazavi, L., & Mohajerzadeh, A. (2020). An efficient authentication and key agreement scheme based on ecdh for wireless sensor network. IEEE Access, 8, 73182–73192.CrossRef
10.
go back to reference Farash, M. S., Turkanović, M., Kumari, S., & Hölbl, M. (2016). An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the internet of things environment. Ad Hoc Networks, 36, 152–176.CrossRef Farash, M. S., Turkanović, M., Kumari, S., & Hölbl, M. (2016). An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the internet of things environment. Ad Hoc Networks, 36, 152–176.CrossRef
11.
go back to reference Lu, Y., Xu, G., Li, L., & Yang, Y. (2019). Anonymous three-factor authenticated key agreement for wireless sensor networks. Wireless Networks, 25(4), 1461–1475.CrossRef Lu, Y., Xu, G., Li, L., & Yang, Y. (2019). Anonymous three-factor authenticated key agreement for wireless sensor networks. Wireless Networks, 25(4), 1461–1475.CrossRef
12.
go back to reference Shin, S., & Kwon, T. (2018). Two-factor authenticated key agreement supporting unlinkability in 5g-integrated wireless sensor networks. IEEE Access, 6, 11229–11241.CrossRef Shin, S., & Kwon, T. (2018). Two-factor authenticated key agreement supporting unlinkability in 5g-integrated wireless sensor networks. IEEE Access, 6, 11229–11241.CrossRef
13.
go back to reference Meena, U., & Sharma, A. (2018). Secure key agreement with rekeying using flso routing protocol in wireless sensor network. Wireless Personal Communications, 101(2), 1177–1199.CrossRef Meena, U., & Sharma, A. (2018). Secure key agreement with rekeying using flso routing protocol in wireless sensor network. Wireless Personal Communications, 101(2), 1177–1199.CrossRef
14.
go back to reference Chunka, C., Banerjee, S., & Goswami, R. S. (2021). An efficient user authentication and session key agreement in wireless sensor network using smart card. Wireless Personal Communications, 117(2), 1361–1385.CrossRef Chunka, C., Banerjee, S., & Goswami, R. S. (2021). An efficient user authentication and session key agreement in wireless sensor network using smart card. Wireless Personal Communications, 117(2), 1361–1385.CrossRef
15.
go back to reference Xue, K., Ma, C., Hong, P., & Ding, R. (2013). A temporal-credential-based mutual authentication and key agreement scheme for wireless sensor networks. Journal of Network and Computer Applications, 36(1), 316–323.CrossRef Xue, K., Ma, C., Hong, P., & Ding, R. (2013). A temporal-credential-based mutual authentication and key agreement scheme for wireless sensor networks. Journal of Network and Computer Applications, 36(1), 316–323.CrossRef
16.
go back to reference Jung, J., Moon, J., Lee, D., & Won, D. (2017). Efficient and security enhanced anonymous authentication with key agreement scheme in wireless sensor networks. Sensors, 17(3), 644.CrossRef Jung, J., Moon, J., Lee, D., & Won, D. (2017). Efficient and security enhanced anonymous authentication with key agreement scheme in wireless sensor networks. Sensors, 17(3), 644.CrossRef
17.
go back to reference Galindo, D., Roman, R., & Lopez, J. (2012). On the energy cost of authenticated key agreement in wireless sensor networks. Wireless Communications and Mobile Computing, 12(1), 133–143.CrossRef Galindo, D., Roman, R., & Lopez, J. (2012). On the energy cost of authenticated key agreement in wireless sensor networks. Wireless Communications and Mobile Computing, 12(1), 133–143.CrossRef
18.
go back to reference Singh, A., Awasthi, A. K., & Singh, K. (2017). Cryptanalysis and improvement in user authentication and key agreement scheme for wireless sensor network. Wireless Personal Communications, 94(3), 1881–1898.CrossRef Singh, A., Awasthi, A. K., & Singh, K. (2017). Cryptanalysis and improvement in user authentication and key agreement scheme for wireless sensor network. Wireless Personal Communications, 94(3), 1881–1898.CrossRef
19.
go back to reference Turkanović, M., Brumen, B., & Hölbl, M. (2014). A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the internet of things notion. Ad Hoc Networks, 20, 96–112.CrossRef Turkanović, M., Brumen, B., & Hölbl, M. (2014). A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the internet of things notion. Ad Hoc Networks, 20, 96–112.CrossRef
20.
go back to reference Zhang, Q., Li, Y., Zhang, Q., Yuan, J., Wang, R., Gan, Y., & Tan, Y. (2019). A self-certified cross-cluster asymmetric group key agreement for wireless sensor networks. Chinese Journal of Electronics, 28(2), 280–287.CrossRef Zhang, Q., Li, Y., Zhang, Q., Yuan, J., Wang, R., Gan, Y., & Tan, Y. (2019). A self-certified cross-cluster asymmetric group key agreement for wireless sensor networks. Chinese Journal of Electronics, 28(2), 280–287.CrossRef
21.
go back to reference Das, A. K., Kumari, S., Odelu, V., Li, X., Wu, F., & Huang, X. (2016). Provably secure user authentication and key agreement scheme for wireless sensor networks. Security and Communication Networks, 9(16), 3670–3687.CrossRef Das, A. K., Kumari, S., Odelu, V., Li, X., Wu, F., & Huang, X. (2016). Provably secure user authentication and key agreement scheme for wireless sensor networks. Security and Communication Networks, 9(16), 3670–3687.CrossRef
22.
go back to reference Das, A. K., Sutrala, A. K., Kumari, S., Odelu, V., Wazid, M., & Li, X. (2016). An efficient multi-gateway-based three-factor user authentication and key agreement scheme in hierarchical wireless sensor networks. Security and Communication Networks, 9(13), 2070–2092.CrossRef Das, A. K., Sutrala, A. K., Kumari, S., Odelu, V., Wazid, M., & Li, X. (2016). An efficient multi-gateway-based three-factor user authentication and key agreement scheme in hierarchical wireless sensor networks. Security and Communication Networks, 9(13), 2070–2092.CrossRef
23.
go back to reference Chen, Y., & Chen, J. (2021). An efficient mutual authentication and key agreement scheme without password for wireless sensor networks. The Journal of Supercomputing, 77(12), 13653–13675.CrossRef Chen, Y., & Chen, J. (2021). An efficient mutual authentication and key agreement scheme without password for wireless sensor networks. The Journal of Supercomputing, 77(12), 13653–13675.CrossRef
24.
go back to reference Wu, T.-Y., Yang, L., Lee, Z., Chu, S.-C., Kumari, S., & Kumar, S. (2021). A provably secure three-factor authentication protocol for wireless sensor networks. Wireless Communications and Mobile Computing, 2021, 1–15. Wu, T.-Y., Yang, L., Lee, Z., Chu, S.-C., Kumari, S., & Kumar, S. (2021). A provably secure three-factor authentication protocol for wireless sensor networks. Wireless Communications and Mobile Computing, 2021, 1–15.
25.
go back to reference Mehmood, G., Khan, M. S., Waheed, A., Zareei, M., Fayaz, M., Sadad, T., Kama, N., & Azmi, A. (2021). An efficient and secure session key management scheme in wireless sensor network. Complexity, 2021, 1–10.CrossRef Mehmood, G., Khan, M. S., Waheed, A., Zareei, M., Fayaz, M., Sadad, T., Kama, N., & Azmi, A. (2021). An efficient and secure session key management scheme in wireless sensor network. Complexity, 2021, 1–10.CrossRef
26.
go back to reference Kumar, V., Ray, S., Dasgupta, M., & Khan, M. K. (2021). A pairing free identity based two party authenticated key agreement protocol using hexadecimal extended ascii elliptic curve cryptography. Wireless Personal Communications, 118(4), 3045–3061.CrossRef Kumar, V., Ray, S., Dasgupta, M., & Khan, M. K. (2021). A pairing free identity based two party authenticated key agreement protocol using hexadecimal extended ascii elliptic curve cryptography. Wireless Personal Communications, 118(4), 3045–3061.CrossRef
27.
go back to reference Yang, S.-K., Shiue, Y.-M., Su, Z.-Y., Liu, I.-H., & Liu, C.-G. (2020). An authentication information exchange scheme in wsn for iot applications. IEEE access, 8, 9728–9738.CrossRef Yang, S.-K., Shiue, Y.-M., Su, Z.-Y., Liu, I.-H., & Liu, C.-G. (2020). An authentication information exchange scheme in wsn for iot applications. IEEE access, 8, 9728–9738.CrossRef
28.
go back to reference Das, A. K., Wazid, M., Kumar, N., Vasilakos, A. V., & Rodrigues, J. J. (2018). Biometrics-based privacy-preserving user authentication scheme for cloud-based industrial internet of things deployment. IEEE Internet of Things Journal, 5(6), 4900–4913.CrossRef Das, A. K., Wazid, M., Kumar, N., Vasilakos, A. V., & Rodrigues, J. J. (2018). Biometrics-based privacy-preserving user authentication scheme for cloud-based industrial internet of things deployment. IEEE Internet of Things Journal, 5(6), 4900–4913.CrossRef
29.
go back to reference Chen, Y., Ge, Y., Wang, Y., & Zeng, Z. (2019). An improved three-factor user authentication and key agreement scheme for wireless medical sensor networks. IEEE Access, 7, 85440–85451.CrossRef Chen, Y., Ge, Y., Wang, Y., & Zeng, Z. (2019). An improved three-factor user authentication and key agreement scheme for wireless medical sensor networks. IEEE Access, 7, 85440–85451.CrossRef
30.
go back to reference Ostad-Sharif, A., Arshad, H., Nikooghadam, M., & Abbasinezhad-Mood, D. (2019). Three party secure data transmission in IoT networks through design of a lightweight authenticated key agreement scheme. Future Generation Computer Systems, 100, 882–892.CrossRef Ostad-Sharif, A., Arshad, H., Nikooghadam, M., & Abbasinezhad-Mood, D. (2019). Three party secure data transmission in IoT networks through design of a lightweight authenticated key agreement scheme. Future Generation Computer Systems, 100, 882–892.CrossRef
31.
go back to reference Li, X., Peng, J., Obaidat, M. S., Wu, F., Khan, M. K., & Chen, C. (2019). A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems. IEEE Systems Journal, 14(1), 39–50.CrossRef Li, X., Peng, J., Obaidat, M. S., Wu, F., Khan, M. K., & Chen, C. (2019). A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems. IEEE Systems Journal, 14(1), 39–50.CrossRef
32.
go back to reference Meshram, C., Obaidat, M. S., Lee, C.-C., & Meshram, S. G. (2021). An efficient, robust, and lightweight subtree-based three-factor authentication procedure for large-scale dwsn in random oracle. IEEE Systems Journal, 15(4), 4927–4938.CrossRef Meshram, C., Obaidat, M. S., Lee, C.-C., & Meshram, S. G. (2021). An efficient, robust, and lightweight subtree-based three-factor authentication procedure for large-scale dwsn in random oracle. IEEE Systems Journal, 15(4), 4927–4938.CrossRef
33.
go back to reference Wu, F., Li, X., Xu, L., Vijayakumar, P., & Kumar, N. (2020). A novel three-factor authentication protocol for wireless sensor networks with IoT notion. IEEE Systems Journal, 15(1), 1120–1129.CrossRef Wu, F., Li, X., Xu, L., Vijayakumar, P., & Kumar, N. (2020). A novel three-factor authentication protocol for wireless sensor networks with IoT notion. IEEE Systems Journal, 15(1), 1120–1129.CrossRef
34.
go back to reference Li, Y., & Tian, Y. (2022). A lightweight and secure three-factor authentication protocol with adaptive privacy-preserving property for wireless sensor networks. IEEE Systems Journal, 16(4), 6197–6208.CrossRef Li, Y., & Tian, Y. (2022). A lightweight and secure three-factor authentication protocol with adaptive privacy-preserving property for wireless sensor networks. IEEE Systems Journal, 16(4), 6197–6208.CrossRef
35.
go back to reference Li, C., Dong, M., Li, J., Xu, G., Chen, X.-B., Liu, W., & Ota, K. (2022). Efficient medical big data management with keyword-searchable encryption in healthchain. IEEE Systems Journal, 16(4), 5521–5532.CrossRef Li, C., Dong, M., Li, J., Xu, G., Chen, X.-B., Liu, W., & Ota, K. (2022). Efficient medical big data management with keyword-searchable encryption in healthchain. IEEE Systems Journal, 16(4), 5521–5532.CrossRef
36.
go back to reference Li, C., Guo, Y., Dong, M., Xu, G., Chen, X.-B., Li, J., & Ota, K. (2023). Efficient certificateless authenticated key agreement for blockchain-enabled internet of medical things. CMC-Computers Materials and Continua, 75(1), 2043–2059.CrossRef Li, C., Guo, Y., Dong, M., Xu, G., Chen, X.-B., Li, J., & Ota, K. (2023). Efficient certificateless authenticated key agreement for blockchain-enabled internet of medical things. CMC-Computers Materials and Continua, 75(1), 2043–2059.CrossRef
37.
go back to reference Darbandeh, F. G., & Safkhani, M. (2023). Sapwsn: A secure authentication protocol for wireless sensor networks. Computer Networks, 220, 109469.CrossRef Darbandeh, F. G., & Safkhani, M. (2023). Sapwsn: A secure authentication protocol for wireless sensor networks. Computer Networks, 220, 109469.CrossRef
38.
go back to reference Chiou, S.-Y., & Chang, S.-Y. (2018). An enhanced authentication scheme in mobile rfid system. Ad Hoc Networks, 71, 1–13.CrossRef Chiou, S.-Y., & Chang, S.-Y. (2018). An enhanced authentication scheme in mobile rfid system. Ad Hoc Networks, 71, 1–13.CrossRef
39.
go back to reference Dai, C., & Xu, Z. (2022). A secure three-factor authentication scheme for multi-gateway wireless sensor networks based on elliptic curve cryptography. Ad Hoc Networks, 127, 102768.CrossRef Dai, C., & Xu, Z. (2022). A secure three-factor authentication scheme for multi-gateway wireless sensor networks based on elliptic curve cryptography. Ad Hoc Networks, 127, 102768.CrossRef
40.
go back to reference Li, C., Tian, Y., Chen, X., & Li, J. (2021). An efficient anti-quantum lattice-based blind signature for blockchain-enabled systems. Information Sciences, 546, 253–264.CrossRef Li, C., Tian, Y., Chen, X., & Li, J. (2021). An efficient anti-quantum lattice-based blind signature for blockchain-enabled systems. Information Sciences, 546, 253–264.CrossRef
41.
go back to reference Ding, J., Alsayigh, S., Lancrenon, J., Rv, S., & Snook, M. (2017). Provably secure password authenticated key exchange based on RLWE for the post-quantum world (pp. 183–204). Berlin: Springer. Ding, J., Alsayigh, S., Lancrenon, J., Rv, S., & Snook, M. (2017). Provably secure password authenticated key exchange based on RLWE for the post-quantum world (pp. 183–204). Berlin: Springer.
42.
go back to reference Gentry, C., Peikert, C., & Vaikuntanathan, V. (2008). Trapdoors for hard lattices and new cryptographic constructions, In: Proceedings of the fortieth annual ACM symposium on Theory of computing, pp. 197–206. Gentry, C., Peikert, C., & Vaikuntanathan, V. (2008). Trapdoors for hard lattices and new cryptographic constructions, In: Proceedings of the fortieth annual ACM symposium on Theory of computing, pp. 197–206.
43.
go back to reference Micciancio, D., & Regev, O. (2007). Worst-case to average-case reductions based on gaussian measures. SIAM Journal on Computing, 37(1), 267–302.CrossRef Micciancio, D., & Regev, O. (2007). Worst-case to average-case reductions based on gaussian measures. SIAM Journal on Computing, 37(1), 267–302.CrossRef
44.
go back to reference Zhang, J., Zhang, Z., Ding, J., Snook, M., & Dagdelen, Ö. (2015). Authenticated key exchange from ideal lattices. Annual international conference on the theory and applications of cryptographic techniques (pp. 719–751). Berlin: Springer. Zhang, J., Zhang, Z., Ding, J., Snook, M., & Dagdelen, Ö. (2015). Authenticated key exchange from ideal lattices. Annual international conference on the theory and applications of cryptographic techniques (pp. 719–751). Berlin: Springer.
45.
go back to reference Lyubashevsky, V., Peikert, C., & Regev, O. (2013). On ideal lattices and learning with errors over rings. Journal of the ACM (JACM), 60(6), 1–35.CrossRef Lyubashevsky, V., Peikert, C., & Regev, O. (2013). On ideal lattices and learning with errors over rings. Journal of the ACM (JACM), 60(6), 1–35.CrossRef
46.
go back to reference Shoup, V. (2004). Sequences of games: a tool for taming complexity in security proofs, cryptology eprint archive Shoup, V. (2004). Sequences of games: a tool for taming complexity in security proofs, cryptology eprint archive
47.
go back to reference Feng, Q., He, D., Zeadally, S., Kumar, N., & Liang, K. (2018). Ideal lattice-based anonymous authentication protocol for mobile devices. IEEE Systems Journal, 13(3), 2775–2785.CrossRef Feng, Q., He, D., Zeadally, S., Kumar, N., & Liang, K. (2018). Ideal lattice-based anonymous authentication protocol for mobile devices. IEEE Systems Journal, 13(3), 2775–2785.CrossRef
48.
go back to reference Islam, S. H. (2020). Provably secure two-party authenticated key agreement protocol for post-quantum environments. Journal of Information Security and Applications, 52, 102468.CrossRef Islam, S. H. (2020). Provably secure two-party authenticated key agreement protocol for post-quantum environments. Journal of Information Security and Applications, 52, 102468.CrossRef
51.
go back to reference Islam, S. H., & Basu, S. (2021). Pb-3paka: Password-based three-party authenticated key agreement protocol for mobile devices in post-quantum environments. Journal of Information Security and Applications, 63, 103026. Islam, S. H., & Basu, S. (2021). Pb-3paka: Password-based three-party authenticated key agreement protocol for mobile devices in post-quantum environments. Journal of Information Security and Applications, 63, 103026.
Metadata
Title
Post-quantum secure authenticated key agreement protocol for wireless sensor networks
Authors
Mrityunjay Singh
Dheerendra Mishra
Publication date
21-07-2023
Publisher
Springer US
Published in
Telecommunication Systems / Issue 1/2023
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-023-01043-z

Other articles of this Issue 1/2023

Telecommunication Systems 1/2023 Go to the issue