Skip to main content
Top
Published in: Telecommunication Systems 1/2023

29-06-2023

Secure fine grained access control for telecare medical communication system

Authors: Amitesh Kumar Pandit, Kakali Chatterjee, Ashish Singh

Published in: Telecommunication Systems | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modern healthcare institutions are now equipped to provide telecare services because of substantial improvements in telecommunication. Numerous services are provided through the telecare system. For efficient utilization of telecare service, Personal Health Information (PHI) must be shared among various stakeholders. Due to sensitiveness of healthcare data, sharing may create a slew of security and privacy challenges. The Attribute-Based Access Control (ABAC) seems an appropriate cryptographic solution. But, a small amount of healthcare data may reveal a patient’s identity or other information. The minimum amount of PHI sharing is recommended to maintain an individual’s privacy. However, the existing ABAC does not support partial access control on PHI. They either allow access to the entire PHI or restrict it completely. To achieve this finest level of access control, if ABAC applies on each data attribute separately, it will increase computation and communication overhead. Therefore, existing ABAC protocols are unsuitable for a Telecare Medical Communication System (TMCS). The paper proposes a fine-grain access control framework for TMCS based on Multi-authority Attribute Based Access Control. It provides partial access control over PHI and assures the security and privacy of PHI. During the PHI access phase, multiple attribute authorities perform most of the computation simultaneously, increasing the present scheme’s efficiency and scalability. Further, symmetric bilinear pairing enhances its efficiency and makes it suitable for resource constraint environments. The k-out-of-n oblivious transfer protocol hides the data access pattern and maintains privacy. Security analysis proves that the present scheme is secure under the hardness of the discrete logarithm problem and the Decisional Bilinear Diffie–Hellman assumption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Karatas, M., Eriskin, L., Deveci, M., Pamucar, D., & Garg, H. (2022). Big data for healthcare industry 4.0: Applications, challenges and future perspectives. Expert Systems with Applications, 200, 116912. Karatas, M., Eriskin, L., Deveci, M., Pamucar, D., & Garg, H. (2022). Big data for healthcare industry 4.0: Applications, challenges and future perspectives. Expert Systems with Applications, 200, 116912.
4.
go back to reference Karatas, M., Erişkin, L., & Bozkaya, E. (2022). Transportation and location planning during epidemics/pandemics: Emerging problems and solution approaches. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25139–25156.CrossRef Karatas, M., Erişkin, L., & Bozkaya, E. (2022). Transportation and location planning during epidemics/pandemics: Emerging problems and solution approaches. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25139–25156.CrossRef
6.
go back to reference Jayasri, T., Manasa Manvitha, M., Shalima, S., & Anil, J. (2022). Maintenance of personal health record system with cipher text policy attribute-based encryption and quick decryption. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 13(03), 1131–1138. Jayasri, T., Manasa Manvitha, M., Shalima, S., & Anil, J. (2022). Maintenance of personal health record system with cipher text policy attribute-based encryption and quick decryption. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 13(03), 1131–1138.
7.
go back to reference Hamsanandhini, S., Eswaran, M., & Varanambika, V. (2022). Health record maintenance using cloud computing and multi authority attribute based encryption. In 2022 International conference on computer communication and informatics (ICCCI) (pp. 01–08). IEEE. Hamsanandhini, S., Eswaran, M., & Varanambika, V. (2022). Health record maintenance using cloud computing and multi authority attribute based encryption. In 2022 International conference on computer communication and informatics (ICCCI) (pp. 01–08). IEEE.
8.
go back to reference Singh, A., & Chatterjee, K. (2017). Cloud security issues and challenges: A survey. Journal of Network and Computer Applications, 79, 88–115.CrossRef Singh, A., & Chatterjee, K. (2017). Cloud security issues and challenges: A survey. Journal of Network and Computer Applications, 79, 88–115.CrossRef
9.
go back to reference Singh, A., & Chatterjee, K. (2019). Security and privacy issues of electronic healthcare system: A survey. Journal of Information and Optimization Sciences, 40(8), 1709–1729.CrossRef Singh, A., & Chatterjee, K. (2019). Security and privacy issues of electronic healthcare system: A survey. Journal of Information and Optimization Sciences, 40(8), 1709–1729.CrossRef
10.
go back to reference Singh, A., & Chatterjee, K. (2021). Securing smart healthcare system with edge computing. Computers and Security, 108, 102353.CrossRef Singh, A., & Chatterjee, K. (2021). Securing smart healthcare system with edge computing. Computers and Security, 108, 102353.CrossRef
11.
go back to reference Kundalwal, M. K., Singh, A., & Chatterjee, K. (2018). A privacy framework in cloud computing for healthcare data. In 2018 International conference on advances in computing, communication control and networking (ICACCCN) (pp. 58–63). IEEE. Kundalwal, M. K., Singh, A., & Chatterjee, K. (2018). A privacy framework in cloud computing for healthcare data. In 2018 International conference on advances in computing, communication control and networking (ICACCCN) (pp. 58–63). IEEE.
12.
go back to reference Singh, A., & Chatterjee, K. (2020). An adaptive mutual trust based access control model for electronic healthcare system. Journal of Ambient Intelligence and Humanized Computing, 11, 2117–2136.CrossRef Singh, A., & Chatterjee, K. (2020). An adaptive mutual trust based access control model for electronic healthcare system. Journal of Ambient Intelligence and Humanized Computing, 11, 2117–2136.CrossRef
13.
go back to reference Singh, A., & Chatterjee, K. (2017). A mutual trust based access control framework for securing electronic healthcare system. In 2017 14th IEEE India council international conference (INDICON), (pp. 1–6). IEEE. Singh, A., & Chatterjee, K. (2017). A mutual trust based access control framework for securing electronic healthcare system. In 2017 14th IEEE India council international conference (INDICON), (pp. 1–6). IEEE.
14.
go back to reference Singh, A., & Chatterjee, K. (2019). Rtbac: A new approach for securing electronic healthcare system. In 2019 International conference on computing, power and communication technologies (GUCON) (pp. 269–273). IEEE. Singh, A., & Chatterjee, K. (2019). Rtbac: A new approach for securing electronic healthcare system. In 2019 International conference on computing, power and communication technologies (GUCON) (pp. 269–273). IEEE.
15.
go back to reference Singh, A., & Chatterjee, K. (2019). Trust based access control model for securing electronic healthcare system. Journal of Ambient Intelligence and Humanized Computing, 10, 4547–4565.CrossRef Singh, A., & Chatterjee, K. (2019). Trust based access control model for securing electronic healthcare system. Journal of Ambient Intelligence and Humanized Computing, 10, 4547–4565.CrossRef
16.
go back to reference Singh, A., Chandra, U., Kumar, S., & Chatterjee, K. (2019). A secure access control model for e-health cloud. In TENCON 2019-2019 IEEE Region 10 conference (TENCON) (pp. 2329–2334). IEEE. Singh, A., Chandra, U., Kumar, S., & Chatterjee, K. (2019). A secure access control model for e-health cloud. In TENCON 2019-2019 IEEE Region 10 conference (TENCON) (pp. 2329–2334). IEEE.
17.
go back to reference Singh, A., & Chatterjee, K. (2019). Itrust: Identity and trust based access control model for healthcare system security. Multimedia Tools and Applications, 78(19), 28309–28330.CrossRef Singh, A., & Chatterjee, K. (2019). Itrust: Identity and trust based access control model for healthcare system security. Multimedia Tools and Applications, 78(19), 28309–28330.CrossRef
18.
go back to reference Chaudhary, R. R. K., & Chatterjee, K. (2020). An efficient lightweight cryptographic technique for iot based e-healthcare system. In 2020 7th International conference on signal processing and integrated networks (SPIN) (pp. 991–995). IEEE. Chaudhary, R. R. K., & Chatterjee, K. (2020). An efficient lightweight cryptographic technique for iot based e-healthcare system. In 2020 7th International conference on signal processing and integrated networks (SPIN) (pp. 991–995). IEEE.
19.
go back to reference Kundalwal, M. K., Chatterjee, K., & Singh, A. (2019). An improved privacy preservation technique in health-cloud. ICT Express, 5(3), 167–172.CrossRef Kundalwal, M. K., Chatterjee, K., & Singh, A. (2019). An improved privacy preservation technique in health-cloud. ICT Express, 5(3), 167–172.CrossRef
20.
go back to reference Li, M., Shucheng, Yu., Zheng, Y., Ren, K., & Lou, W. (2012). Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE Transactions on Parallel and Distributed Systems, 24(1), 131–143.CrossRef Li, M., Shucheng, Yu., Zheng, Y., Ren, K., & Lou, W. (2012). Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE Transactions on Parallel and Distributed Systems, 24(1), 131–143.CrossRef
21.
go back to reference Son, S., Lee, J., Kim, M., Yu, S., Das, A. K., & Park, Y. (2020). Design of secure authentication protocol for cloud-assisted telecare medical information system using blockchain. IEEE Access, 8, 192177–192191.CrossRef Son, S., Lee, J., Kim, M., Yu, S., Das, A. K., & Park, Y. (2020). Design of secure authentication protocol for cloud-assisted telecare medical information system using blockchain. IEEE Access, 8, 192177–192191.CrossRef
22.
go back to reference Radhakrishnan, N., & Karuppiah, M. (2019). An efficient and secure remote user mutual authentication scheme using smart cards for telecare medical information systems. Informatics in Medicine Unlocked, 16, 100092.CrossRef Radhakrishnan, N., & Karuppiah, M. (2019). An efficient and secure remote user mutual authentication scheme using smart cards for telecare medical information systems. Informatics in Medicine Unlocked, 16, 100092.CrossRef
23.
go back to reference Singh, A., & Chatterjee, K. (2017). A multi-dimensional trust and reputation calculation model for cloud computing environments. In 2017 ISEA Asia security and privacy (ISEASP) (pp. 1–8). Singh, A., & Chatterjee, K. (2017). A multi-dimensional trust and reputation calculation model for cloud computing environments. In 2017 ISEA Asia security and privacy (ISEASP) (pp. 1–8).
24.
go back to reference Park, J. S., Sandhu, R., & Ahn, G.-J. (2001). Role-based access control on the web. ACM Transactions on Information and System Security (TISSEC), 4(1), 37–71.CrossRef Park, J. S., Sandhu, R., & Ahn, G.-J. (2001). Role-based access control on the web. ACM Transactions on Information and System Security (TISSEC), 4(1), 37–71.CrossRef
25.
go back to reference Kumar, A., Tripathi, S., & Jaiswal, P. (2015). Design of efficient id-based group key agreement protocol suited for pay-tv application. In 2015 International conference on advances in computing, communications and informatics (ICACCI) (pp. 1940–1944). IEEE. Kumar, A., Tripathi, S., & Jaiswal, P. (2015). Design of efficient id-based group key agreement protocol suited for pay-tv application. In 2015 International conference on advances in computing, communications and informatics (ICACCI) (pp. 1940–1944). IEEE.
26.
go back to reference Kumar, A., & Tripathi, S. (2016). Anonymous id-based group key agreement protocol without pairing. International Journal of Network Security, 18(2), 263–273. Kumar, A., & Tripathi, S. (2016). Anonymous id-based group key agreement protocol without pairing. International Journal of Network Security, 18(2), 263–273.
27.
go back to reference Benaloh, J., Chase, M., Horvitz, E., & Lauter, K. (2009). Patient controlled encryption: Ensuring privacy of electronic medical records. In Proceedings of the 2009 ACM workshop on Cloud computing security (pp. 103–114). Benaloh, J., Chase, M., Horvitz, E., & Lauter, K. (2009). Patient controlled encryption: Ensuring privacy of electronic medical records. In Proceedings of the 2009 ACM workshop on Cloud computing security (pp. 103–114).
28.
go back to reference Dong, C., Russello, G., & Dulay, N. (2011). Shared and searchable encrypted data for untrusted servers. Journal of Computer Security, 19(3), 367–397.CrossRef Dong, C., Russello, G., & Dulay, N. (2011). Shared and searchable encrypted data for untrusted servers. Journal of Computer Security, 19(3), 367–397.CrossRef
29.
go back to reference Gritti, C., Refik Molva, M., Susilo, W., & Plantard, T. (2018). Device identification and personal data attestation in networks. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 9(4), 1–25. Gritti, C., Refik Molva, M., Susilo, W., & Plantard, T. (2018). Device identification and personal data attestation in networks. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 9(4), 1–25.
30.
go back to reference Liu, Y., Changqiao, X., Zhan, Y., Liu, Z., Guan, J., & Zhang, H. (2017). Incentive mechanism for computation offloading using edge computing: A stackelberg game approach. Computer Networks, 129, 399–409.CrossRef Liu, Y., Changqiao, X., Zhan, Y., Liu, Z., Guan, J., & Zhang, H. (2017). Incentive mechanism for computation offloading using edge computing: A stackelberg game approach. Computer Networks, 129, 399–409.CrossRef
31.
go back to reference Raghavendra, S., Meghana, K., Doddabasappa, P. A., Geeta, C. M., Buyya, R., Venugopal, K. R., Iyengar, S. S., & Patnaik, L. M. (2016). Index generation and secure multi-user access control over an encrypted cloud data. Procedia Computer Science, 89, 293–300.CrossRef Raghavendra, S., Meghana, K., Doddabasappa, P. A., Geeta, C. M., Buyya, R., Venugopal, K. R., Iyengar, S. S., & Patnaik, L. M. (2016). Index generation and secure multi-user access control over an encrypted cloud data. Procedia Computer Science, 89, 293–300.CrossRef
32.
go back to reference Gokuldev, S., & Leelavathi, S. (2013). Hasbe: A hierarchical attribute-based solution for flexible and scalable access control by separate encryption/decryption in cloud computing. International Journal of Engineering Science and Innovative Technology (IJESIT), 2(3), 139–145. Gokuldev, S., & Leelavathi, S. (2013). Hasbe: A hierarchical attribute-based solution for flexible and scalable access control by separate encryption/decryption in cloud computing. International Journal of Engineering Science and Innovative Technology (IJESIT), 2(3), 139–145.
33.
go back to reference Liu, Y., Quan, W., Wang, T., & Wang, Yu. (2018). Delay-constrained utility maximization for video ads push in mobile opportunistic d2d networks. IEEE Internet of Things Journal, 5(5), 4088–4099.CrossRef Liu, Y., Quan, W., Wang, T., & Wang, Yu. (2018). Delay-constrained utility maximization for video ads push in mobile opportunistic d2d networks. IEEE Internet of Things Journal, 5(5), 4088–4099.CrossRef
34.
go back to reference Kotenko, I. V., Saenko, I., & Branitskiy, A. (2018). Applying big data processing and machine learning methods for mobile internet of things security monitoring. Journal of Internet Services and Information Security, 8(3), 54–63. Kotenko, I. V., Saenko, I., & Branitskiy, A. (2018). Applying big data processing and machine learning methods for mobile internet of things security monitoring. Journal of Internet Services and Information Security, 8(3), 54–63.
35.
go back to reference Tanwar, S., Parekh, K., & Evans, R. (2020). Blockchain-based electronic healthcare record system for healthcare 4.0 applications. Journal of Information Security and Applications, 50, 102407.CrossRef Tanwar, S., Parekh, K., & Evans, R. (2020). Blockchain-based electronic healthcare record system for healthcare 4.0 applications. Journal of Information Security and Applications, 50, 102407.CrossRef
36.
go back to reference Mitra, B., Sural, S., Vaidya, J., & Atluri, V. (2017). Migrating from rbac to temporal rbac. IET Information Security, 11(5), 294–300.CrossRef Mitra, B., Sural, S., Vaidya, J., & Atluri, V. (2017). Migrating from rbac to temporal rbac. IET Information Security, 11(5), 294–300.CrossRef
37.
go back to reference Alam, Q., Malik, S. U., Akhunzada, A., Raymond Choo, K.-K., Tabbasum, S., & Alam, M. (2016). A cross tenant access control (ctac) model for cloud computing: formal specification and verification. IEEE Transactions on Information Forensics and Security, 12(6), 1259–1268.CrossRef Alam, Q., Malik, S. U., Akhunzada, A., Raymond Choo, K.-K., Tabbasum, S., & Alam, M. (2016). A cross tenant access control (ctac) model for cloud computing: formal specification and verification. IEEE Transactions on Information Forensics and Security, 12(6), 1259–1268.CrossRef
38.
go back to reference Goyal, V., Pandey, O., Sahai, A, & Waters, B. (2006). Attribute-based encryption for fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on computer and communications security (pp. 89–980). Goyal, V., Pandey, O., Sahai, A, & Waters, B. (2006). Attribute-based encryption for fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on computer and communications security (pp. 89–980).
39.
go back to reference Kumar, A., & Verma, R. (2020). Attribute-based authenticated group key transfer protocol without pairing. Wireless Personal Communications, 113(4), 1791–1805.CrossRef Kumar, A., & Verma, R. (2020). Attribute-based authenticated group key transfer protocol without pairing. Wireless Personal Communications, 113(4), 1791–1805.CrossRef
40.
go back to reference Shi, Y., Zheng, Q., Liu, J., & Han, Z. (2015). Directly revocable key-policy attribute-based encryption with verifiable ciphertext delegation. Information Sciences, 295, 221–231.CrossRef Shi, Y., Zheng, Q., Liu, J., & Han, Z. (2015). Directly revocable key-policy attribute-based encryption with verifiable ciphertext delegation. Information Sciences, 295, 221–231.CrossRef
41.
go back to reference Gupta, M., Awaysheh, F. M., Benson, J., Alazab, M., Patwa, F., & Sandhu, R. (2020). An attribute-based access control for cloud enabled industrial smart vehicles. IEEE Transactions on Industrial Informatics, 17(6), 4288–4297.CrossRef Gupta, M., Awaysheh, F. M., Benson, J., Alazab, M., Patwa, F., & Sandhu, R. (2020). An attribute-based access control for cloud enabled industrial smart vehicles. IEEE Transactions on Industrial Informatics, 17(6), 4288–4297.CrossRef
42.
go back to reference Li, L., Tianlong, G., Chang, L., Zhoubo, X., Liu, Y., & Qian, J. (2017). A ciphertext-policy attribute-based encryption based on an ordered binary decision diagram. IEEE Access, 5, 1137–1145.CrossRef Li, L., Tianlong, G., Chang, L., Zhoubo, X., Liu, Y., & Qian, J. (2017). A ciphertext-policy attribute-based encryption based on an ordered binary decision diagram. IEEE Access, 5, 1137–1145.CrossRef
43.
go back to reference Liu, Z., & Wong, D. S. (2016). Practical attribute-based encryption: Traitor tracing, revocation and large universe. The Computer Journal, 59(7), 983–1004.CrossRef Liu, Z., & Wong, D. S. (2016). Practical attribute-based encryption: Traitor tracing, revocation and large universe. The Computer Journal, 59(7), 983–1004.CrossRef
44.
go back to reference Rana, S., & Mishra, D. (2020). Efficient and secure attribute based access control architecture for smart healthcare. Journal of Medical Systems, 44, 1–11.CrossRef Rana, S., & Mishra, D. (2020). Efficient and secure attribute based access control architecture for smart healthcare. Journal of Medical Systems, 44, 1–11.CrossRef
45.
go back to reference Liu, J. K., Yuen, T. H., Zhang, P., & Liang, K. (2018). Time-based direct revocable ciphertext-policy attribute-based encryption with short revocation list. In Applied cryptography and network security: 16th international conference, ACNS 2018, Leuven, Belgium, July 2–4, proceedings 16 (pp. 516–534). Springer. Liu, J. K., Yuen, T. H., Zhang, P., & Liang, K. (2018). Time-based direct revocable ciphertext-policy attribute-based encryption with short revocation list. In Applied cryptography and network security: 16th international conference, ACNS 2018, Leuven, Belgium, July 2–4, proceedings 16 (pp. 516–534). Springer.
46.
go back to reference Esposito, C., Santis, A. D., Tortora, G., Chang, H., & Raymond Choo, K.-K. (2018). Blockchain: A panacea for healthcare cloud-based data security and privacy? IEEE Cloud Computing, 5(1), 31–37.CrossRef Esposito, C., Santis, A. D., Tortora, G., Chang, H., & Raymond Choo, K.-K. (2018). Blockchain: A panacea for healthcare cloud-based data security and privacy? IEEE Cloud Computing, 5(1), 31–37.CrossRef
48.
go back to reference Di Pietro, R., Salleras, X, Signorini, M., Waisbard, E. (2018). A blockchain-based trust system for the internet of things. In Proceedings of the 23nd ACM on symposium on access control models and technologies (pp. 77–83). Di Pietro, R., Salleras, X, Signorini, M., Waisbard, E. (2018). A blockchain-based trust system for the internet of things. In Proceedings of the 23nd ACM on symposium on access control models and technologies (pp. 77–83).
49.
go back to reference Chen, Z., Weidong, X., Wang, B., & Hua, Yu. (2021). A blockchain-based preserving and sharing system for medical data privacy. Future Generation Computer Systems, 124, 338–350.CrossRef Chen, Z., Weidong, X., Wang, B., & Hua, Yu. (2021). A blockchain-based preserving and sharing system for medical data privacy. Future Generation Computer Systems, 124, 338–350.CrossRef
50.
go back to reference Lee, T.-F., Li, H.-Z., & Hsieh, Y.-P. (2021). A blockchain-based medical data preservation scheme for telecare medical information systems. International Journal of Information Security, 20, 589–601.CrossRef Lee, T.-F., Li, H.-Z., & Hsieh, Y.-P. (2021). A blockchain-based medical data preservation scheme for telecare medical information systems. International Journal of Information Security, 20, 589–601.CrossRef
51.
go back to reference Mamo, N., Martin, G. M., Desira, M., Ellul, B., & Ebejer, J.-P. (2020). Dwarna: A blockchain solution for dynamic consent in biobanking. European Journal of Human Genetics, 28(5), 609–626.CrossRef Mamo, N., Martin, G. M., Desira, M., Ellul, B., & Ebejer, J.-P. (2020). Dwarna: A blockchain solution for dynamic consent in biobanking. European Journal of Human Genetics, 28(5), 609–626.CrossRef
53.
go back to reference Ali, Z., Ghani, A., Khan, I., Ashraf Chaudhry, S., Hafizul Islam, S. K., & Giri, D. (2020). A robust authentication and access control protocol for securing wireless healthcare sensor networks. Journal of Information Security and Applications, 52, 102502.CrossRef Ali, Z., Ghani, A., Khan, I., Ashraf Chaudhry, S., Hafizul Islam, S. K., & Giri, D. (2020). A robust authentication and access control protocol for securing wireless healthcare sensor networks. Journal of Information Security and Applications, 52, 102502.CrossRef
54.
go back to reference Dharminder, D., Mishra, D., & Li, X. (2020). Construction of rsa-based authentication scheme in authorized access to healthcare services: Authorized access to healthcare services. Journal of Medical Systems, 44, 1–9.CrossRef Dharminder, D., Mishra, D., & Li, X. (2020). Construction of rsa-based authentication scheme in authorized access to healthcare services: Authorized access to healthcare services. Journal of Medical Systems, 44, 1–9.CrossRef
55.
go back to reference Gupta, B. B., Prajapati, V., Nedjah, N., Vijayakumar, P., Abd El-Latif, A. A., & Chang, X. (2021). Machine learning and smart card based two-factor authentication scheme for preserving anonymity in telecare medical information system (tmis). Neural Computing and Applications, 1–26. Gupta, B. B., Prajapati, V., Nedjah, N., Vijayakumar, P., Abd El-Latif, A. A., & Chang, X. (2021). Machine learning and smart card based two-factor authentication scheme for preserving anonymity in telecare medical information system (tmis). Neural Computing and Applications, 1–26.
56.
go back to reference Ahamad, S. S., Al-Shehri, M., & Keshta, I. (2022). A secure and resilient scheme for telecare medical information systems with threat modeling and formal verification. IEEE Access, 10, 120227–120244.CrossRef Ahamad, S. S., Al-Shehri, M., & Keshta, I. (2022). A secure and resilient scheme for telecare medical information systems with threat modeling and formal verification. IEEE Access, 10, 120227–120244.CrossRef
57.
go back to reference Xiao, L., Xie, S., Han, D., Liang, W., Guo, J., & Chou, W.-K. (2021). A lightweight authentication scheme for telecare medical information system. Connection Science, 33(3), 769–785.CrossRef Xiao, L., Xie, S., Han, D., Liang, W., Guo, J., & Chou, W.-K. (2021). A lightweight authentication scheme for telecare medical information system. Connection Science, 33(3), 769–785.CrossRef
58.
go back to reference Kumar, C. M., Amin, R., & Brindha, M. (2023). Cryptanalysis of secure ecc-based three factor mutual authentication protocol for telecare medical information system. Cyber Security and Applications, 1, 100013.CrossRef Kumar, C. M., Amin, R., & Brindha, M. (2023). Cryptanalysis of secure ecc-based three factor mutual authentication protocol for telecare medical information system. Cyber Security and Applications, 1, 100013.CrossRef
59.
go back to reference Servos, D., & Osborn, S. L. (2017). Current research and open problems in attribute-based access control. ACM Computing Surveys (CSUR), 49(4), 1–45.CrossRef Servos, D., & Osborn, S. L. (2017). Current research and open problems in attribute-based access control. ACM Computing Surveys (CSUR), 49(4), 1–45.CrossRef
60.
go back to reference Pool, J., Akhlaghpour, S., Fatehi, F., & Gray, L. C. (2022). Data privacy concerns and use of telehealth in the aged care context: An integrative review and research agenda. International Journal of Medical Informatics, 104707. Pool, J., Akhlaghpour, S., Fatehi, F., & Gray, L. C. (2022). Data privacy concerns and use of telehealth in the aged care context: An integrative review and research agenda. International Journal of Medical Informatics, 104707.
61.
go back to reference Kumar, P., Alphonse, P. J. A., et al. (2018). Attribute based encryption in cloud computing: A survey, gap analysis, and future directions. Journal of Network and Computer Applications, 108, 37–52.CrossRef Kumar, P., Alphonse, P. J. A., et al. (2018). Attribute based encryption in cloud computing: A survey, gap analysis, and future directions. Journal of Network and Computer Applications, 108, 37–52.CrossRef
62.
go back to reference Namasudra, S., Devi, D., Choudhary, S., Patan, R., & Kallam, S. (2018). Security, privacy, trust, and anonymity. In Advances of DNA computing in cryptography (pp. 138–150). Chapman and Hall/CRC. Namasudra, S., Devi, D., Choudhary, S., Patan, R., & Kallam, S. (2018). Security, privacy, trust, and anonymity. In Advances of DNA computing in cryptography (pp. 138–150). Chapman and Hall/CRC.
63.
go back to reference Namasudra, S. (2020). Fast and secure data accessing by using dna computing for the cloud environment. IEEE Transactions on Services Computing, 15(4), 2289–2300.CrossRef Namasudra, S. (2020). Fast and secure data accessing by using dna computing for the cloud environment. IEEE Transactions on Services Computing, 15(4), 2289–2300.CrossRef
64.
go back to reference Yan, Z., Li, X., Kantola, R. (2017). Heterogeneous data access control based on trust and reputation in mobile cloud computing. In Advances in mobile cloud computing and big data in the 5G era (pp. 65–113). Yan, Z., Li, X., Kantola, R. (2017). Heterogeneous data access control based on trust and reputation in mobile cloud computing. In Advances in mobile cloud computing and big data in the 5G era (pp. 65–113).
65.
go back to reference Chatterjee, K. (2017). An efficient biometric based remote user authentication technique for multi-server environment. Wireless Personal Communications, 97, 4729–4745.CrossRef Chatterjee, K. (2017). An efficient biometric based remote user authentication technique for multi-server environment. Wireless Personal Communications, 97, 4729–4745.CrossRef
66.
go back to reference Behera, P. K., & Khilar, P. M. (2017). A novel trust based access control model for cloud environment. In Proceedings of the international conference on signal, networks, computing, and systems: ICSNCS 2016, (Vol. 1, pp. 285–295). Springer. Behera, P. K., & Khilar, P. M. (2017). A novel trust based access control model for cloud environment. In Proceedings of the international conference on signal, networks, computing, and systems: ICSNCS 2016, (Vol. 1, pp. 285–295). Springer.
67.
go back to reference Au, M. H., Hon Yuen, T., Liu, J. K., Susilo, W., Huang, X., Xiang, Y., & Jiang, Z. L. (2017). A general framework for secure sharing of personal health records in cloud system. Journal of Computer and System Sciences, 90, 46–62. Au, M. H., Hon Yuen, T., Liu, J. K., Susilo, W., Huang, X., Xiang, Y., & Jiang, Z. L. (2017). A general framework for secure sharing of personal health records in cloud system. Journal of Computer and System Sciences, 90, 46–62.
Metadata
Title
Secure fine grained access control for telecare medical communication system
Authors
Amitesh Kumar Pandit
Kakali Chatterjee
Ashish Singh
Publication date
29-06-2023
Publisher
Springer US
Published in
Telecommunication Systems / Issue 1/2023
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-023-01033-1

Other articles of this Issue 1/2023

Telecommunication Systems 1/2023 Go to the issue