Skip to main content
Top
Published in: Health and Technology 4/2022

06-04-2022 | Original Paper

Power line noise and baseline wander removal from ECG signals using empirical mode decomposition and lifting wavelet transform technique

Authors: Shahid A. Malik, Shabir A. Parah, Bilal A. Malik

Published in: Health and Technology | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The potency of the intuitive empirical mode decomposition in conjugation with the efficient and fast lifting wavelet transform in discarding powerline noise and baseline wander is studied in this paper. The Empirical Mode Decomposition (EMD) disintegrates the noisy ECG signal into a band of intrinsic mode functions with the noise remaining confined within a few modes. The sum of the noisy modes corresponding to the Power Line Interference (PLI) and the baseline wander are separately fed to a multi-level lifting wavelet transform where the coefficients corresponding to the noise are set to zero using a hard threshold scheme. A periodic extension method is used in each case to take care of the border effects. The noise free modes are reconstructed using the inverse Lifting Wavelet Transform (LWT). The processed intrinsic modes are added to the remaining unprocessed modes to reconstruct the final noise free signal. The QRS complex preserved using an R-peak location mechanism is finally added to the signal. The prowess of the method has been tested by calculating the increase in the signal-to-noise ratio as well as the cross-correlation coefficient values between the clean input message signal and the denoised output signal at different input SNR values for various ECG records available online at MIT-BIH Arrhythmia database. The results have been compared various other methods to establish the superiority of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goldberger AL, Goldberger ZD, Shivlkin A. Goldberger’s Clinical Electrocardiography: a simplified approach. Elsevier 8th Edition,2012 Goldberger AL, Goldberger ZD, Shivlkin A. Goldberger’s Clinical Electrocardiography: a simplified approach. Elsevier 8th Edition,2012
2.
go back to reference Ribeiro AH, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun. 2020;11(1):1–9.CrossRef Ribeiro AH, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun. 2020;11(1):1–9.CrossRef
3.
go back to reference Alste JAV, Eck WV, Herrmann OE. ECG baseline wander reduction using linear phase filters. Comp Biomed Res. 1986;19(5):417–27.CrossRef Alste JAV, Eck WV, Herrmann OE. ECG baseline wander reduction using linear phase filters. Comp Biomed Res. 1986;19(5):417–27.CrossRef
4.
go back to reference Alste JAV, Schilder TS. Removal of base-line wander and power-line interference from the ECG by an efficient fir filter with a reduced number of taps. IEEE Trans Biomed Eng. 1985;12:1052–60.CrossRef Alste JAV, Schilder TS. Removal of base-line wander and power-line interference from the ECG by an efficient fir filter with a reduced number of taps. IEEE Trans Biomed Eng. 1985;12:1052–60.CrossRef
5.
go back to reference Pei SC, Tseng CC. Elimination of AC interference in electrocardiogram using IIR notch filter with transient suppression. IEEE Trans Biomed Eng. 1995;42(11):1128–32.CrossRef Pei SC, Tseng CC. Elimination of AC interference in electrocardiogram using IIR notch filter with transient suppression. IEEE Trans Biomed Eng. 1995;42(11):1128–32.CrossRef
6.
go back to reference Hamilton PS. A comparison of adaptive and non-adaptive filters for reduction of power line interference in the ECG.IEEE Trans Biomed Eng. 1996;43, 105–109 Hamilton PS. A comparison of adaptive and non-adaptive filters for reduction of power line interference in the ECG.IEEE Trans Biomed Eng. 1996;43, 105–109
7.
go back to reference Razzaq N, Sheikh S, Salman M, Zaidi T. An Intelligent Adaptive Filter for Elimination of Power Line Interference from High Resolution Electrocardiogram. IEEE Access. 2016;4:1–1.CrossRef Razzaq N, Sheikh S, Salman M, Zaidi T. An Intelligent Adaptive Filter for Elimination of Power Line Interference from High Resolution Electrocardiogram. IEEE Access. 2016;4:1–1.CrossRef
8.
go back to reference Singh O, Sunkaria RK. ECG signal denoising via empirical wavelet transform. Australas Phys Eng Sci Med. 2017;40(1):219–29.CrossRef Singh O, Sunkaria RK. ECG signal denoising via empirical wavelet transform. Australas Phys Eng Sci Med. 2017;40(1):219–29.CrossRef
9.
go back to reference Sharma RR, Pachori RB. Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition. Biomed Sig Proc Contr. 2018;45:33–49.CrossRef Sharma RR, Pachori RB. Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition. Biomed Sig Proc Contr. 2018;45:33–49.CrossRef
10.
go back to reference Singh P, Srivastava I, Singhal A, Gupta A. Baseline wander and power-line interference removal from ECG signals using Fourier decomposition method. Singapore: Machine Intel Sig Anal. Springer; 2019. p. 25–36. Singh P, Srivastava I, Singhal A, Gupta A. Baseline wander and power-line interference removal from ECG signals using Fourier decomposition method. Singapore: Machine Intel Sig Anal. Springer; 2019. p. 25–36.
11.
go back to reference Hesar HD, Mohebbi M. An adaptive Kalman filter bank for ECG denoising. IEEE Jour Biomed Health Infor 2020. Hesar HD, Mohebbi M. An adaptive Kalman filter bank for ECG denoising. IEEE Jour Biomed Health Infor 2020.
12.
go back to reference Singh P, Gayadhar P. Variational mode decomposition based ECG denoising using non-local means and wavelet domain filtering. Austr Phy eng sci med. 2018;41(4):891–904.CrossRef Singh P, Gayadhar P. Variational mode decomposition based ECG denoising using non-local means and wavelet domain filtering. Austr Phy eng sci med. 2018;41(4):891–904.CrossRef
13.
go back to reference Shridhar S, Karuna Y, Saladi S, Reddy R. Denoising of ECG signals using wavelet transform and principal component analysis. Proc Intern Conf Sust Comp Sci Tech Manag (SUSCOM), Amity Uni Raj. Jaipur-India. 2019. Shridhar S, Karuna Y, Saladi S, Reddy R. Denoising of ECG signals using wavelet transform and principal component analysis. Proc Intern Conf Sust Comp Sci Tech Manag (SUSCOM), Amity Uni Raj. Jaipur-India. 2019.
14.
go back to reference Blanco-Velasco M, Weng B, Barner KE. ECG signal denoising and baseline-wander correction based on the empirical mode decomposition. Comp Biol Med. 2008;38(1):1–13.CrossRef Blanco-Velasco M, Weng B, Barner KE. ECG signal denoising and baseline-wander correction based on the empirical mode decomposition. Comp Biol Med. 2008;38(1):1–13.CrossRef
15.
go back to reference Nimunkar AJ, Tompkins WJ. EMD-based 60-Hz noise filtering of the ECG. In: Proc of the 29th Annual Int Conf IEEE EMBS Cité Int., Lyon, France 1904–1907. 2007. Nimunkar AJ, Tompkins WJ. EMD-based 60-Hz noise filtering of the ECG. In: Proc of the 29th Annual Int Conf IEEE EMBS Cité Int., Lyon, France 1904–1907. 2007.
16.
go back to reference Jain S, Bajaj V, Kumar A. Riemann Liouvelle Fractional Integral based Empirical Mode Decomposition for ECG Denoising. J Biomed Health inform. 2017;22(4):1133–9.CrossRef Jain S, Bajaj V, Kumar A. Riemann Liouvelle Fractional Integral based Empirical Mode Decomposition for ECG Denoising. J Biomed Health inform. 2017;22(4):1133–9.CrossRef
17.
go back to reference Kabir MA, Shahnaz C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed Sig Proc Cont. 2012;7(5):481–9.CrossRef Kabir MA, Shahnaz C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed Sig Proc Cont. 2012;7(5):481–9.CrossRef
18.
go back to reference Yzu QR. Realization and improvement of the modulus maximum de-noising method based on wavelet transformation. Jour Nanjing Uni Posts Telecom. 2009;29:74–9. Yzu QR. Realization and improvement of the modulus maximum de-noising method based on wavelet transformation. Jour Nanjing Uni Posts Telecom. 2009;29:74–9.
19.
go back to reference Donoho DL. De-noising by soft-thresholding. IEEE Trans Inf Theory 1995;41(3):613–27. Donoho DL. De-noising by soft-thresholding. IEEE Trans Inf Theory 1995;41(3):613–27.
20.
go back to reference B’charri OE, Latif R, Elmansouri K, Abenaou A, Jenkal W. ECG signal performance de‑noising assessment based on threshold tuning of dual‑tree wavelet transform. BioMed Eng OnLine 2017;16(1)16:26. B’charri OE, Latif R, Elmansouri K, Abenaou A, Jenkal W. ECG signal performance de‑noising assessment based on threshold tuning of dual‑tree wavelet transform. BioMed Eng OnLine 2017;16(1)16:26.
21.
go back to reference Prashar N, Sood M, Jain S. Design and implementation of a robust noise removal system in ECG signals using dual-tree complex wavelet transform. Biomed Signal Process Control, 2020;63, 102212. Prashar N, Sood M, Jain S. Design and implementation of a robust noise removal system in ECG signals using dual-tree complex wavelet transform. Biomed Signal Process Control, 2020;63, 102212.
22.
go back to reference Kumar A, Tomar H, Mehla VK, Komaragiri R, Kumar M. Stationary wavelet transform based ECG signal denoising method. ISA Trans. 2021;114:251–62.CrossRef Kumar A, Tomar H, Mehla VK, Komaragiri R, Kumar M. Stationary wavelet transform based ECG signal denoising method. ISA Trans. 2021;114:251–62.CrossRef
23.
go back to reference Ercelebi E. Electrocardiogram signals de-noising using lifting-based discrete wavelet transform. Comput Biol Med. 2004;34(6):479–93.CrossRef Ercelebi E. Electrocardiogram signals de-noising using lifting-based discrete wavelet transform. Comput Biol Med. 2004;34(6):479–93.CrossRef
24.
go back to reference Kabir MA, Shahnaz C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed Signal Process Control. 2012;7(5):481–9.CrossRef Kabir MA, Shahnaz C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed Signal Process Control. 2012;7(5):481–9.CrossRef
25.
go back to reference Dwivedi AK, Ranjan H, Menon A, Periasamy P. Noise reduction in ECG signal using Ensemble Empirical Mode Decomposition with stationary wavelet transform. Circ Sys Sig proc. 2021;40(2):827–44.CrossRef Dwivedi AK, Ranjan H, Menon A, Periasamy P. Noise reduction in ECG signal using Ensemble Empirical Mode Decomposition with stationary wavelet transform. Circ Sys Sig proc. 2021;40(2):827–44.CrossRef
26.
go back to reference Malik SA, Parah SA, Bhat GM. Electrocardiogram (ECG) denoising method utilizing Empirical Mode Decomposition (EMD) with SWT and a Mean based filter. In 2021 2nd Internatl Conf Intel Eng Manag (ICIEM), 2021;322–326, IEEE. Malik SA, Parah SA, Bhat GM. Electrocardiogram (ECG) denoising method utilizing Empirical Mode Decomposition (EMD) with SWT and a Mean based filter. In 2021 2nd Internatl Conf Intel Eng Manag (ICIEM), 2021;322–326, IEEE.
27.
go back to reference Rakshit M, Das S. An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter. Biomed Sig Process Con. 2018;40:140–8.CrossRef Rakshit M, Das S. An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter. Biomed Sig Process Con. 2018;40:140–8.CrossRef
28.
go back to reference Kumar S, Panigrahy D. Sahu PK. Denoising of Electrocardiogram (ECG) signal by using empirical mode decomposition (EMD) with non-local mean (NLM) techniques. Biocybern Biomed Eng. 2018;38(2):297–312. Kumar S, Panigrahy D. Sahu PK. Denoising of Electrocardiogram (ECG) signal by using empirical mode decomposition (EMD) with non-local mean (NLM) techniques. Biocybern Biomed Eng. 2018;38(2):297–312.
29.
go back to reference Huang N, Shen Z, Long S, Wu M, Shih H, Zheng Q, Yen N, Tung C, Liu H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R. Society A: Maths Phys Eng Sci. 1998;454(1971),903–995. Huang N, Shen Z, Long S, Wu M, Shih H, Zheng Q, Yen N, Tung C, Liu H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R. Society A: Maths Phys Eng Sci. 1998;454(1971),903–995.
30.
go back to reference Daubechies I, Lu J, Wu HT. Synchro-squeezed wavelet transforms: an empirical mode decomposition-like tool. App Comp Har Analy. 2011;30(2):243–61.CrossRef Daubechies I, Lu J, Wu HT. Synchro-squeezed wavelet transforms: an empirical mode decomposition-like tool. App Comp Har Analy. 2011;30(2):243–61.CrossRef
32.
go back to reference Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets. App Comput Harm Analy. 1996;3(2);186–200. Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets. App Comput Harm Analy. 1996;3(2);186–200.
33.
go back to reference Claypoole RL, Richard GB, Nowak RD. Adaptive wavelet transforms via lifting. In: Proc. of the 1998 IEEE Int Conf Acoust Speech and Sig Proces., ICASSP'98 (Cat. No. 98CH36181). IEEE 1998;1513–1516. Claypoole RL, Richard GB, Nowak RD. Adaptive wavelet transforms via lifting. In: Proc. of the 1998 IEEE Int Conf Acoust Speech and Sig Proces., ICASSP'98 (Cat. No. 98CH36181). IEEE 1998;1513–1516.
34.
go back to reference Liu Z, Mi Y, Mao Y. Improved Real-time Denoising Method Based on Lifting Wavelet Transform. Measurement science review. 2014;14(3):152–9.CrossRef Liu Z, Mi Y, Mao Y. Improved Real-time Denoising Method Based on Lifting Wavelet Transform. Measurement science review. 2014;14(3):152–9.CrossRef
37.
go back to reference Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Transac Biomed Eng. 1985;32(3):230–6.CrossRef Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Transac Biomed Eng. 1985;32(3):230–6.CrossRef
38.
go back to reference Fariha MAZ, Ikeura R, Hayakawa S, Tsutsumi S. Analysis of Pan-Tompkins Algorithm Performance with Noisy ECG Signals. J Phys Conf Ser. 2020;1532(1):012022. Fariha MAZ, Ikeura R, Hayakawa S, Tsutsumi S. Analysis of Pan-Tompkins Algorithm Performance with Noisy ECG Signals. J Phys Conf Ser. 2020;1532(1):012022.
39.
go back to reference Yazdani S, Vesin JM. Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Dig Sig.Proc. A Review Journ. 2016;56:100–109. Yazdani S, Vesin JM. Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Dig Sig.Proc. A Review Journ. 2016;56:100–109.
40.
go back to reference Farashi S. A multiresolution time-dependent entropy method for QRS complex detection. Biomed Sig Proc Contr. 2016;24:63–71.CrossRef Farashi S. A multiresolution time-dependent entropy method for QRS complex detection. Biomed Sig Proc Contr. 2016;24:63–71.CrossRef
41.
go back to reference Rufas C, Carrabina J. Simple real-time QRS detector with the MaMeMi filter. Biomed Sig Proc Contr. 2015;21:137–45.CrossRef Rufas C, Carrabina J. Simple real-time QRS detector with the MaMeMi filter. Biomed Sig Proc Contr. 2015;21:137–45.CrossRef
42.
go back to reference Rani R, Chouhan VS, Sinha HP. Automated detection of QRS complex in ECG signal using wavelet transform. Intern Journ Com Sci Network Sec. 2015;15(1):1–5. Rani R, Chouhan VS, Sinha HP. Automated detection of QRS complex in ECG signal using wavelet transform. Intern Journ Com Sci Network Sec. 2015;15(1):1–5.
43.
go back to reference Madeiro JPV, Cortez PC, Marques JAL, Seisdedos CRV, Sobrinho CRMR. An innovative approach of QRS segmentation based on first-derivative, Hilbert and Wavelet Transforms. Med Eng Phy. 2012;34(9):1236–1246. Madeiro JPV, Cortez PC, Marques JAL, Seisdedos CRV, Sobrinho CRMR. An innovative approach of QRS segmentation based on first-derivative, Hilbert and Wavelet Transforms. Med Eng Phy. 2012;34(9):1236–1246.
44.
go back to reference Yochum M, Renaud C, Jacquir S. Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT. Biomed Sig Proces and Contr. 2016;25:46–52.CrossRef Yochum M, Renaud C, Jacquir S. Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT. Biomed Sig Proces and Contr. 2016;25:46–52.CrossRef
45.
go back to reference Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transforms. IEEE Trans on biomed Eng. 1995;42(1):21–8.CrossRef Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transforms. IEEE Trans on biomed Eng. 1995;42(1):21–8.CrossRef
46.
go back to reference Hossain MB, Bashar SK, Walkey AJ, McManus DD, Chon KH. An Accurate QRS Complex and P Wave Detection in ECG Signals Using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Approach. IEEE Access. 2019;7:128869–80.CrossRef Hossain MB, Bashar SK, Walkey AJ, McManus DD, Chon KH. An Accurate QRS Complex and P Wave Detection in ECG Signals Using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Approach. IEEE Access. 2019;7:128869–80.CrossRef
48.
go back to reference Rodríguez R, Mexicano A, Billa J, Cervantes S, Ponse R. Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. J Appl Res Tech. 2015;13(2):261–9.CrossRef Rodríguez R, Mexicano A, Billa J, Cervantes S, Ponse R. Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. J Appl Res Tech. 2015;13(2):261–9.CrossRef
49.
go back to reference Luz EJDS, Shcwartz WR, Camara-Chavez G, Menotti D. ECG-based heartbeat classification for arrhythmia detection: A survey. Com Meth Progr Biomed. 2016;127:144–64.CrossRef Luz EJDS, Shcwartz WR, Camara-Chavez G, Menotti D. ECG-based heartbeat classification for arrhythmia detection: A survey. Com Meth Progr Biomed. 2016;127:144–64.CrossRef
50.
go back to reference Jia M, Li F, Wu J, Chen Z, Pu Y. Robust QRS detection using high-resolution wavelet packet decomposition and time-attention convolutional neural network. IEEE Access. 2020;8:16979–88.CrossRef Jia M, Li F, Wu J, Chen Z, Pu Y. Robust QRS detection using high-resolution wavelet packet decomposition and time-attention convolutional neural network. IEEE Access. 2020;8:16979–88.CrossRef
51.
go back to reference Singh P, Pradhan G. A new ECG denoising framework using generative adversarial network. In: IEEE/ACM Transact Computation Biol Bioinformat. (2020). Singh P, Pradhan G. A new ECG denoising framework using generative adversarial network. In: IEEE/ACM Transact Computation Biol Bioinformat. (2020).
53.
go back to reference Sharma RR, Pachori RB. Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition. Biomed Signal Process Control. 2018;45:33–49.CrossRef Sharma RR, Pachori RB. Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition. Biomed Signal Process Control. 2018;45:33–49.CrossRef
54.
go back to reference Keshtkaran MR, Yang Z. A fast, robust algorithm for power line interference cancellation in neural recording. J Neural Engr. 2014;11(2):026017 Keshtkaran MR, Yang Z. A fast, robust algorithm for power line interference cancellation in neural recording. J Neural Engr. 2014;11(2):026017
55.
go back to reference Sharma H, Sharma KK. Baseline wander removal of ECG signals using Hilbert vibration decomposition. Electron Lett. 2015;51(6):447–449. Sharma H, Sharma KK. Baseline wander removal of ECG signals using Hilbert vibration decomposition. Electron Lett. 2015;51(6):447–449.
56.
go back to reference Boda S, Mahadevappa M, Dutta PK. A hybrid method for removal of power line interference and baseline wander in ECG signals using EMD and EWT. Biomed Signal Process Control. 2021;67:102466. Boda S, Mahadevappa M, Dutta PK. A hybrid method for removal of power line interference and baseline wander in ECG signals using EMD and EWT. Biomed Signal Process Control. 2021;67:102466.
Metadata
Title
Power line noise and baseline wander removal from ECG signals using empirical mode decomposition and lifting wavelet transform technique
Authors
Shahid A. Malik
Shabir A. Parah
Bilal A. Malik
Publication date
06-04-2022
Publisher
Springer Berlin Heidelberg
Published in
Health and Technology / Issue 4/2022
Print ISSN: 2190-7188
Electronic ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-022-00662-x

Other articles of this Issue 4/2022

Health and Technology 4/2022 Go to the issue

Premium Partner