Skip to main content
Top

2017 | OriginalPaper | Chapter

9. Practical Implementation Aspects of Large-Scale Optimal Control Solvers

Authors : Thomas J. Böhme, Benjamin Frank

Published in: Hybrid Systems, Optimal Control and Hybrid Vehicles

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The direct transcription methods of optimal control problems lead to large-scale nonlinear programming problems. One suitable framework for the solution of this type of optimization problems is sequential quadratic programming, which is described in Chap. 2. But it is crucial for large-scale applications, that the SQP-algorithm takes into account the particular properties and structure of the objective and constraint functions. The Karush–Kuhn–Tucker matrices, which occur in the subproblems, must be sparse, so that the linear equation systems can be efficiently solved. To accomplish this task for general problems the structure of the matrix must be determined, the derivatives have to be calculated, and a sparse Quasi-Newton update has to be implemented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bischof CH, Carle A, Corliss GF, Griewank A, Hovland PD (1992) ADIFOR—generating derivative codes from Fortran programs. Sci Program 1(1):11–29 Bischof CH, Carle A, Corliss GF, Griewank A, Hovland PD (1992) ADIFOR—generating derivative codes from Fortran programs. Sci Program 1(1):11–29
2.
go back to reference Bischof CH, Carle A, Khademi P, Mauer A (1996) ADIFOR 2.0: automatic differentiation of Fortran 77 programs. IEEE Comput Sci Eng 3(3):18–32CrossRef Bischof CH, Carle A, Khademi P, Mauer A (1996) ADIFOR 2.0: automatic differentiation of Fortran 77 programs. IEEE Comput Sci Eng 3(3):18–32CrossRef
4.
5.
6.
go back to reference Curtis AR, Powell MJD, Reid JK (1974) On the estimation of sparse Jacobian matrices. IMA J Appl Math 13(1):117–119CrossRefMATH Curtis AR, Powell MJD, Reid JK (1974) On the estimation of sparse Jacobian matrices. IMA J Appl Math 13(1):117–119CrossRefMATH
7.
go back to reference Davis T (2006) Direct methods for sparse linear systems. Fundamentals of algorithms, Society for Industrial and Applied Mathematics Davis T (2006) Direct methods for sparse linear systems. Fundamentals of algorithms, Society for Industrial and Applied Mathematics
8.
go back to reference Duff I, Erisman A, Reid J (1986) Direct methods for sparse matrices. Monographs on numerical analysis. Clarendon Press Duff I, Erisman A, Reid J (1986) Direct methods for sparse matrices. Monographs on numerical analysis. Clarendon Press
10.
go back to reference Gebremedhin AH, Manne F, Pothen A (2005) What color is your Jacobian? graph coloring for computing derivatives. SIAM REV 47:629–705MathSciNetCrossRefMATH Gebremedhin AH, Manne F, Pothen A (2005) What color is your Jacobian? graph coloring for computing derivatives. SIAM REV 47:629–705MathSciNetCrossRefMATH
12.
go back to reference George A, Liu JW (1981) Computer solution of large sparse positive definite. Prentice Hall Professional Technical Reference George A, Liu JW (1981) Computer solution of large sparse positive definite. Prentice Hall Professional Technical Reference
16.
go back to reference Gill PE, Murray W, Saunders MA (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J OPTIM 12(4):979–1006MathSciNetCrossRefMATH Gill PE, Murray W, Saunders MA (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J OPTIM 12(4):979–1006MathSciNetCrossRefMATH
17.
go back to reference Gower RM, Mello MP (2014) Computing the sparsity pattern of Hessians using automatic differentiation. ACM Trans Math Softw 40(2):10:1–10:15. doi:10.1145/2490254 Gower RM, Mello MP (2014) Computing the sparsity pattern of Hessians using automatic differentiation. ACM Trans Math Softw 40(2):10:1–10:15. doi:10.​1145/​2490254
18.
go back to reference Griewank A, Walther A (2008) Evaluating derivatives: principles and techniques of algorithmic differentiation, 2nd edn, Society for Industrial and Applied Mathematics. SIAM e-books Griewank A, Walther A (2008) Evaluating derivatives: principles and techniques of algorithmic differentiation, 2nd edn, Society for Industrial and Applied Mathematics. SIAM e-books
19.
go back to reference Griewank A, Juedes D, Mitev H, Utke J, Vogel O, Walther A (1999) ADOL-C: a package for the automatic differentiation of algorithms written in C/C++. Technical Report, Institute of Scientific Computing, Technical University Dresden, updated version of the paper published in. ACM Trans Math Softw 22(1996):131–167 Griewank A, Juedes D, Mitev H, Utke J, Vogel O, Walther A (1999) ADOL-C: a package for the automatic differentiation of algorithms written in C/C++. Technical Report, Institute of Scientific Computing, Technical University Dresden, updated version of the paper published in. ACM Trans Math Softw 22(1996):131–167
20.
go back to reference Heggernes P, Eisestat S, Kumfert G, Pothen A (2001) The computational complexity of the minimum degree algorithm. Technical Report, DTIC Document Heggernes P, Eisestat S, Kumfert G, Pothen A (2001) The computational complexity of the minimum degree algorithm. Technical Report, DTIC Document
21.
go back to reference Hogg J, Hall J, Grothey A, Gondzio J (2010) High performance cholesky and symmetric indefinite factorizations with applications. University of Edinburgh Hogg J, Hall J, Grothey A, Gondzio J (2010) High performance cholesky and symmetric indefinite factorizations with applications. University of Edinburgh
23.
go back to reference Kahrimanian HG (1953) Analytical differentiation by a digital computer. PhD thesis, Temple University Kahrimanian HG (1953) Analytical differentiation by a digital computer. PhD thesis, Temple University
24.
go back to reference Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392MathSciNetCrossRefMATH Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392MathSciNetCrossRefMATH
25.
go back to reference Lantoine G, Russell RP, Dargent T (2012) Using multicomplex variables for automatic computation of high-order derivatives. ACM Trans Math Softw 38(3):1–21. doi:10.1145/2168773.2168774 Lantoine G, Russell RP, Dargent T (2012) Using multicomplex variables for automatic computation of high-order derivatives. ACM Trans Math Softw 38(3):1–21. doi:10.​1145/​2168773.​2168774
27.
28.
30.
go back to reference Mathur R (2012) An analytical approach to computing step sizes for finite-difference derivatives. PhD thesis, University of Texas at Austin Mathur R (2012) An analytical approach to computing step sizes for finite-difference derivatives. PhD thesis, University of Texas at Austin
31.
go back to reference McCormick ST (1983) Optimal approximation of sparse Hessians and its equivalence to a graph coloring problem. Math Program 26(2):153–171MathSciNetCrossRefMATH McCormick ST (1983) Optimal approximation of sparse Hessians and its equivalence to a graph coloring problem. Math Program 26(2):153–171MathSciNetCrossRefMATH
32.
go back to reference Nolan JF (1953) Analytical differentiation on a digital computer. PhD thesis, Massachusetts Institute of Technology Nolan JF (1953) Analytical differentiation on a digital computer. PhD thesis, Massachusetts Institute of Technology
33.
go back to reference Pissanetzky S (2014) Sparse Matrix Technology. Elsevier Science Pissanetzky S (2014) Sparse Matrix Technology. Elsevier Science
34.
go back to reference Powell M, Toint PL (1979) On the estimation of sparse Hessian matrices. SIAM J Numer Anal 16(6):1060–1074 Powell M, Toint PL (1979) On the estimation of sparse Hessian matrices. SIAM J Numer Anal 16(6):1060–1074
35.
go back to reference Rose DJ (1972) A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. Graph theory and computing 183:217 Rose DJ (1972) A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. Graph theory and computing 183:217
36.
go back to reference Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics
38.
go back to reference Tarjan RE, Yannakakis M (1984) Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J Comput 13(3):566–579MathSciNetCrossRefMATH Tarjan RE, Yannakakis M (1984) Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J Comput 13(3):566–579MathSciNetCrossRefMATH
39.
go back to reference Tewarson P, (1973) Sparse matrices, Mathematics in Science and Engineering. Elsevier Science Tewarson P, (1973) Sparse matrices, Mathematics in Science and Engineering. Elsevier Science
40.
go back to reference Tinney WF, Walker JW (1967) Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc IEEE 55(11):1801–1809CrossRef Tinney WF, Walker JW (1967) Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc IEEE 55(11):1801–1809CrossRef
41.
go back to reference Toint PL, Griewank A (1982) On the unconstrained optimization of partially separable objective functions. Nonlinear Optimization. Academic Press, London Toint PL, Griewank A (1982) On the unconstrained optimization of partially separable objective functions. Nonlinear Optimization. Academic Press, London
Metadata
Title
Practical Implementation Aspects of Large-Scale Optimal Control Solvers
Authors
Thomas J. Böhme
Benjamin Frank
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-51317-1_9