Skip to main content
Top
Published in: Advances in Manufacturing 3/2022

02-06-2022

Precision measurement and compensation of kinematic errors for industrial robots using artifact and machine learning

Authors: Ling-Bao Kong, Yi Yu

Published in: Advances in Manufacturing | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Industrial robots are widely used in various areas owing to their greater degrees of freedom (DOFs) and larger operation space compared with traditional frame movement systems involving sliding and rotational stages. However, the geometrical transfer of joint kinematic errors and the relatively weak rigidity of industrial robots compared with frame movement systems decrease their absolute kinematic accuracy, thereby limiting their further application in ultra-precision manufacturing. This imposes a stringent requirement for improving the absolute kinematic accuracy of industrial robots in terms of the position and orientation of the robot arm end. Current measurement and compensation methods for industrial robots either require expensive measuring systems, producing positioning or orientation errors, or offer low measurement accuracy. Herein, a kinematic calibration method for an industrial robot using an artifact with a hybrid spherical and ellipsoid surface is proposed. A system with submicrometric precision for measuring the position and orientation of the robot arm end is developed using laser displacement sensors. Subsequently, a novel kinematic error compensating method involving both a residual learning algorithm and a neural network is proposed to compensate for nonlinear errors. A six-layer recurrent neural network (RNN) is designed to compensate for the kinematic nonlinear errors of a six-DOF industrial robot. The results validate the feasibility of the proposed method for measuring the kinematic errors of industrial robots, and the compensation method based on the RNN improves the accuracy via parameter fitting. Experimental studies show that the measuring system and compensation method can reduce motion errors by more than 30%. The present study provides a feasible and economic approach for measuring and improving the motion accuracy of an industrial robot at the submicrometric measurement level.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Besset P, Olabi A, Gibaru O (2016) Advanced calibration applied to a collaborative robot. In: 2016 IEEE international power electronics and motion control conference (PEMC), Varna, pp 662–667 Besset P, Olabi A, Gibaru O (2016) Advanced calibration applied to a collaborative robot. In: 2016 IEEE international power electronics and motion control conference (PEMC), Varna, pp 662–667
2.
go back to reference Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrix. J Appl Mech 22:215–221MathSciNetCrossRef Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrix. J Appl Mech 22:215–221MathSciNetCrossRef
3.
go back to reference Hayati S, Mirmirani M (1985) Improving the absolute positioning accuracy of robot manipulators. J Robotic Syst 2(4):397–413CrossRef Hayati S, Mirmirani M (1985) Improving the absolute positioning accuracy of robot manipulators. J Robotic Syst 2(4):397–413CrossRef
4.
go back to reference Joubair A, Bonev IA (2015) Kinematic calibration of a six-axis serial robot using distance and sphere constraints. Int J Adv Manuf Technol 77(1/4):515–523CrossRef Joubair A, Bonev IA (2015) Kinematic calibration of a six-axis serial robot using distance and sphere constraints. Int J Adv Manuf Technol 77(1/4):515–523CrossRef
6.
go back to reference Zhuang H, Roth ZS, Hamano F (1992) A complete and parametrically continuous kinematic model for robot manipulators. IEEE Trans Robot Autom 8(4):451–463CrossRef Zhuang H, Roth ZS, Hamano F (1992) A complete and parametrically continuous kinematic model for robot manipulators. IEEE Trans Robot Autom 8(4):451–463CrossRef
7.
go back to reference Chen IM, Yang GL, Tan CT et al (2001) Local POE model for robot kinematic calibration. Mech Mach Theory 36(11/12):1215–1239CrossRef Chen IM, Yang GL, Tan CT et al (2001) Local POE model for robot kinematic calibration. Mech Mach Theory 36(11/12):1215–1239CrossRef
8.
go back to reference Yang X, Wu L, Li J et al (2014) A minimal kinematic model for serial robot calibration using POE formula. Robot Comput Integr Manuf 30(3):326–334CrossRef Yang X, Wu L, Li J et al (2014) A minimal kinematic model for serial robot calibration using POE formula. Robot Comput Integr Manuf 30(3):326–334CrossRef
9.
go back to reference Nubiola A, Bonev IA (2014) Absolute robot calibration with a single telescoping ballbar. Precis Eng 38(3):472–480CrossRef Nubiola A, Bonev IA (2014) Absolute robot calibration with a single telescoping ballbar. Precis Eng 38(3):472–480CrossRef
10.
go back to reference Marwan A, Simic M, Imad F (2017) Calibration method for articulated industrial robots. Procedia Comput Sci 112:1601–1610CrossRef Marwan A, Simic M, Imad F (2017) Calibration method for articulated industrial robots. Procedia Comput Sci 112:1601–1610CrossRef
11.
go back to reference Nubiola A, Bonev IA (2013) Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robot Comput Integr Manuf 29(1):236–245CrossRef Nubiola A, Bonev IA (2013) Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robot Comput Integr Manuf 29(1):236–245CrossRef
12.
go back to reference Du GL, Zhang P, Li D (2015) Online robot calibration based on hybrid sensors using Kalman filters. Robot Comput Integr Manuf 31:91–100CrossRef Du GL, Zhang P, Li D (2015) Online robot calibration based on hybrid sensors using Kalman filters. Robot Comput Integr Manuf 31:91–100CrossRef
16.
go back to reference Ma G, Wang F, Qu Z et al (2006) A feasible vision-based measurement method for robot orientation error. In: The 1st international symposium on systems and control in aerospace and astronautics, Harbin, 19–21 January, pp 1214–1217 Ma G, Wang F, Qu Z et al (2006) A feasible vision-based measurement method for robot orientation error. In: The 1st international symposium on systems and control in aerospace and astronautics, Harbin, 19–21 January, pp 1214–1217
19.
go back to reference Oriolo G, Paolillo A, Rosa L et al (2016) Humanoid odometric localization integrating kinematic, inertial and visual information. Auton Robots 40(5):867–879CrossRef Oriolo G, Paolillo A, Rosa L et al (2016) Humanoid odometric localization integrating kinematic, inertial and visual information. Auton Robots 40(5):867–879CrossRef
20.
go back to reference Monica T, Giovanni L, PierLuigi M et al (2003) A closed-loop neuro-parametric methodology for the calibration of a 5 DOF measuring robot. In: Proceedings of IEEE international symposium on computational intelligence in robotics and automation, pp 1482–1487. https://doi.org/10.1109/CIRA.2003.1222216 Monica T, Giovanni L, PierLuigi M et al (2003) A closed-loop neuro-parametric methodology for the calibration of a 5 DOF measuring robot. In: Proceedings of IEEE international symposium on computational intelligence in robotics and automation, pp 1482–1487. https://​doi.​org/​10.​1109/​CIRA.​2003.​1222216
22.
go back to reference Aoyagi S, Kohama A, Nakata Y et al (2010) Improvement of robot accuracy by calibrating kinematic model using a laser tracking system-compensation of non-geometric errors using neural networks and selection of optimal measuring points using genetic algorithm. In: IEEE/RSJ international conference on intelligent robots and systems, 18–22 October, Taipei, pp 5660–5665. https://doi.org/10.1109/IROS.2010.5652953 Aoyagi S, Kohama A, Nakata Y et al (2010) Improvement of robot accuracy by calibrating kinematic model using a laser tracking system-compensation of non-geometric errors using neural networks and selection of optimal measuring points using genetic algorithm. In: IEEE/RSJ international conference on intelligent robots and systems, 18–22 October, Taipei, pp 5660–5665. https://​doi.​org/​10.​1109/​IROS.​2010.​5652953
23.
go back to reference Messay T, Chen C, Ordoñez R et al (2011) GPGPU acceleration of a novel calibration method for industrial robots. In: Proceedings of the IEEE national aerospace and electronics conference (NAECON), 20–22 July, Dayton, pp 124–129 Messay T, Chen C, Ordoñez R et al (2011) GPGPU acceleration of a novel calibration method for industrial robots. In: Proceedings of the IEEE national aerospace and electronics conference (NAECON), 20–22 July, Dayton, pp 124–129
24.
go back to reference Nguyen HN, Zhou J, Kang HJ (2015) A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network. Neurocomputing 151(3):996–1005CrossRef Nguyen HN, Zhou J, Kang HJ (2015) A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network. Neurocomputing 151(3):996–1005CrossRef
26.
go back to reference Chen DD, Wang TM, Yuan PJ et al (2019) A positional error compensation method for industrial robots combining error similarity and radial basis function neural network. Meas Sci Technol 30(12):125010CrossRef Chen DD, Wang TM, Yuan PJ et al (2019) A positional error compensation method for industrial robots combining error similarity and radial basis function neural network. Meas Sci Technol 30(12):125010CrossRef
27.
go back to reference Nguyen HN, Zhou J, Kang HJ (2015) A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network. Neurocomputing 151:996–1005CrossRef Nguyen HN, Zhou J, Kang HJ (2015) A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network. Neurocomputing 151:996–1005CrossRef
32.
go back to reference Tang HY, He ZY, Ma YX et al (2017) A step identification method for kinematic calibration of a 6-DOF serial robot. Mech Mach Sci 408:1009–1020 Tang HY, He ZY, Ma YX et al (2017) A step identification method for kinematic calibration of a 6-DOF serial robot. Mech Mach Sci 408:1009–1020
34.
go back to reference Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
35.
go back to reference Huang G, Liu Z, Maaten LV et al (2016) Densely connected convolutional networks. In: Proceeding of the conference on computer vision and pattern recognition (CVPR), 21–26 July, Honolulu, pp 4700–4708 Huang G, Liu Z, Maaten LV et al (2016) Densely connected convolutional networks. In: Proceeding of the conference on computer vision and pattern recognition (CVPR), 21–26 July, Honolulu, pp 4700–4708
Metadata
Title
Precision measurement and compensation of kinematic errors for industrial robots using artifact and machine learning
Authors
Ling-Bao Kong
Yi Yu
Publication date
02-06-2022
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 3/2022
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-022-00400-6

Other articles of this Issue 3/2022

Advances in Manufacturing 3/2022 Go to the issue

Premium Partners