Skip to main content
Top
Published in: Tribology Letters 2/2015

01-02-2015 | Original Paper

Predicting Pressure–Viscosity Behavior from Ambient Viscosity and Compressibility: Challenges and Opportunities

Authors: Uma Shantini Ramasamy, Scott Bair, Ashlie Martini

Published in: Tribology Letters | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The potential for using an empirical expression to predict the piezoviscous response of a fluid from its pressure–volume behavior is explored. This approach is particularly promising since the variation of volume with pressure can be obtained relatively easily using atomistic simulations that are based on the molecular structure of the fluid. The accuracy of predictions made using the proposed method is evaluated, and its limitations are discussed in terms of sources of error and potential means of minimizing that error going forward.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Hamrock, B.J., Schmid, S.R., Jacobson, B.O.: Fundamentals of Fluid Film Lubrication. McGraw-Hill, New York (1994) Hamrock, B.J., Schmid, S.R., Jacobson, B.O.: Fundamentals of Fluid Film Lubrication. McGraw-Hill, New York (1994)
2.
go back to reference Bair, S.: High Pressure Rheology for Quantitative Elastohydrodynamics. Elsevier, Oxford (2007) Bair, S.: High Pressure Rheology for Quantitative Elastohydrodynamics. Elsevier, Oxford (2007)
3.
go back to reference Mary, C., Phillipon, D., Lafarge, L., Laurent, D., Rondelez, F., Bair, S., Vergne, P.: New insight into the relationship between molecular effects and the rheological behavior of polymer-thickened lubricants under high pressure. Tribol. Lett. 52, 357–369 (2013)CrossRef Mary, C., Phillipon, D., Lafarge, L., Laurent, D., Rondelez, F., Bair, S., Vergne, P.: New insight into the relationship between molecular effects and the rheological behavior of polymer-thickened lubricants under high pressure. Tribol. Lett. 52, 357–369 (2013)CrossRef
4.
go back to reference Larsson, R., Kassfeldt, E., Byheden, Å., Norrby, T.: Base fluid parameters for elastohydrodynamic lubrication and friction calculations and their influence on lubrication capability. J. Synth. Lubr. 18(3), 183–198 (2001)CrossRef Larsson, R., Kassfeldt, E., Byheden, Å., Norrby, T.: Base fluid parameters for elastohydrodynamic lubrication and friction calculations and their influence on lubrication capability. J. Synth. Lubr. 18(3), 183–198 (2001)CrossRef
5.
go back to reference Pensado, A.S., Comunas, M.J.P., Fernandez, J.: The pressure–viscosity coefficients of several ionic liquids. Tribol. Lett. 31, 107–118 (2008)CrossRef Pensado, A.S., Comunas, M.J.P., Fernandez, J.: The pressure–viscosity coefficients of several ionic liquids. Tribol. Lett. 31, 107–118 (2008)CrossRef
6.
go back to reference Liu, Y., Wang, Q.J., Wang, W., Hu, Y., Zhu, D., Krupka, I., Hartl, M.: EHL simulations using free-volume viscosity model. Tribol. Lett. 23, 27–37 (2006)CrossRef Liu, Y., Wang, Q.J., Wang, W., Hu, Y., Zhu, D., Krupka, I., Hartl, M.: EHL simulations using free-volume viscosity model. Tribol. Lett. 23, 27–37 (2006)CrossRef
7.
go back to reference Evans, D.J., Morriss, G.P.: Statistical Mechanics of Nonequilibrium Liquids. Academic Press, London (1990) Evans, D.J., Morriss, G.P.: Statistical Mechanics of Nonequilibrium Liquids. Academic Press, London (1990)
8.
go back to reference Lee, S.H., Cummings, P.T.: Shear viscosity of model mixtures by nonequilibrium molecular dynamics. J. Chem. Phys. 99, 3919–3925 (1993)CrossRef Lee, S.H., Cummings, P.T.: Shear viscosity of model mixtures by nonequilibrium molecular dynamics. J. Chem. Phys. 99, 3919–3925 (1993)CrossRef
9.
go back to reference Likhtman, A.E., Sukumaran, S.K., Ramirez, J.: Linear viscoelasticity from molecular dynamics simulation of entangled polymer. Macromolecules 40, 6748–6757 (2007)CrossRef Likhtman, A.E., Sukumaran, S.K., Ramirez, J.: Linear viscoelasticity from molecular dynamics simulation of entangled polymer. Macromolecules 40, 6748–6757 (2007)CrossRef
10.
go back to reference Hoover, W.G., Ashurst, W.T.: Nonequilibrium molecular dynamics. Theor. Chem. Adv. Perspect. 1, 1–51 (1975) Hoover, W.G., Ashurst, W.T.: Nonequilibrium molecular dynamics. Theor. Chem. Adv. Perspect. 1, 1–51 (1975)
11.
go back to reference Mondello, M., Grest, G.S.: Viscosity calculations of n-alkanes by equilibrium molecular dynamics. J. Chem. Phys. 106, 9327–9336 (1997)CrossRef Mondello, M., Grest, G.S.: Viscosity calculations of n-alkanes by equilibrium molecular dynamics. J. Chem. Phys. 106, 9327–9336 (1997)CrossRef
12.
go back to reference So, B.Y.C., Klaus, E.E.: Viscosity–pressure correlation of liquids. ASLE Trans. 23, 409–421 (1980)CrossRef So, B.Y.C., Klaus, E.E.: Viscosity–pressure correlation of liquids. ASLE Trans. 23, 409–421 (1980)CrossRef
13.
go back to reference Johnston, W.G.: A method to calculate pressure–viscosity coefficients from bulk properties of lubricants. ASLE Trans. 24, 232–238 (1981)CrossRef Johnston, W.G.: A method to calculate pressure–viscosity coefficients from bulk properties of lubricants. ASLE Trans. 24, 232–238 (1981)CrossRef
14.
go back to reference Wu, C.S., Klaus, E.E., Duda, J.L.: Development of a method for the prediction of pressure–viscosity coefficients of lubricating oils based on free-volume theory. ASME J. Tribol. 111, 121–128 (1989)CrossRef Wu, C.S., Klaus, E.E., Duda, J.L.: Development of a method for the prediction of pressure–viscosity coefficients of lubricating oils based on free-volume theory. ASME J. Tribol. 111, 121–128 (1989)CrossRef
15.
go back to reference Bair, S., Qureshi, F.: Accurate measurements of the pressure–viscosity behavior in lubricants. Tribol. Trans. 45(3), 390–396 (2002)CrossRef Bair, S., Qureshi, F.: Accurate measurements of the pressure–viscosity behavior in lubricants. Tribol. Trans. 45(3), 390–396 (2002)CrossRef
16.
go back to reference Bair, S., Laesecke, A.: Normalized Ashurst–Hoover scaling and a comprehensive viscosity correlation for compressed liquids. J. Tribol. 134(2), 021801 (2012)CrossRef Bair, S., Laesecke, A.: Normalized Ashurst–Hoover scaling and a comprehensive viscosity correlation for compressed liquids. J. Tribol. 134(2), 021801 (2012)CrossRef
17.
go back to reference Martini, A., Vadakeppatt, A.: Compressibility of thin film lubricants characterized using atomistic simulation. Tribol. Lett. 38, 33–38 (2010)CrossRef Martini, A., Vadakeppatt, A.: Compressibility of thin film lubricants characterized using atomistic simulation. Tribol. Lett. 38, 33–38 (2010)CrossRef
18.
go back to reference Vadakeppatt, A., Martini, A.: Confined fluid compressibility predicted using molecular dynamics simulation. Tribol. Int. 44, 330–335 (2011)CrossRef Vadakeppatt, A., Martini, A.: Confined fluid compressibility predicted using molecular dynamics simulation. Tribol. Int. 44, 330–335 (2011)CrossRef
19.
go back to reference Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRef Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRef
20.
go back to reference Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRef Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRef
21.
go back to reference Nośe, S.: A unified formulation of the constant temperature molecular-dynamics method. J. Comput. Phys. 81(1), 511–519 (1984) Nośe, S.: A unified formulation of the constant temperature molecular-dynamics method. J. Comput. Phys. 81(1), 511–519 (1984)
22.
go back to reference Ye, X., Cui, S., de Almeida, V.F., Khomami, B.: Effect of varying the 1–4 intramolecular scaling factor in atomistic simulations of long-chain N-alkanes with the OPLS-AA model. J. Mol. Model. 19, 1251–1258 (2013)CrossRef Ye, X., Cui, S., de Almeida, V.F., Khomami, B.: Effect of varying the 1–4 intramolecular scaling factor in atomistic simulations of long-chain N-alkanes with the OPLS-AA model. J. Mol. Model. 19, 1251–1258 (2013)CrossRef
23.
go back to reference Connolly, M.L.: Computation of molecular volume. J. Am. Chem. Soc. 107, 1118–1124 (1985)CrossRef Connolly, M.L.: Computation of molecular volume. J. Am. Chem. Soc. 107, 1118–1124 (1985)CrossRef
24.
go back to reference ASME: Pressure–viscosity report. American Society of Mechanical Engineers, New York (1953) ASME: Pressure–viscosity report. American Society of Mechanical Engineers, New York (1953)
25.
go back to reference Bair, S.: A characterization of the pressure–viscosity behavior of two gear oils and one tractor oil to 1.2 GPa. Georgia Institute of Technology. Report to John Deere Product Engineering Center (2013) Bair, S.: A characterization of the pressure–viscosity behavior of two gear oils and one tractor oil to 1.2 GPa. Georgia Institute of Technology. Report to John Deere Product Engineering Center (2013)
26.
go back to reference Bair, S.: A characterization of the compressibility of two gear oils. Georgia Institute of Technology. Report to John Deere Product Engineering Center (2013) Bair, S.: A characterization of the compressibility of two gear oils. Georgia Institute of Technology. Report to John Deere Product Engineering Center (2013)
27.
go back to reference Haward, R.N.: Occupied volume of liquids and polymers. J. Macromol. Sci. Part C Polym. Rev. 4(2), 191–242 (1970)CrossRef Haward, R.N.: Occupied volume of liquids and polymers. J. Macromol. Sci. Part C Polym. Rev. 4(2), 191–242 (1970)CrossRef
28.
go back to reference Zhao, Y.H., Abraham, M.H., Zissimos, A.M.: Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J. Org. Chem. 68, 7368–7373 (2003)CrossRef Zhao, Y.H., Abraham, M.H., Zissimos, A.M.: Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J. Org. Chem. 68, 7368–7373 (2003)CrossRef
Metadata
Title
Predicting Pressure–Viscosity Behavior from Ambient Viscosity and Compressibility: Challenges and Opportunities
Authors
Uma Shantini Ramasamy
Scott Bair
Ashlie Martini
Publication date
01-02-2015
Publisher
Springer US
Published in
Tribology Letters / Issue 2/2015
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-014-0454-5

Other articles of this Issue 2/2015

Tribology Letters 2/2015 Go to the issue

Premium Partners