Skip to main content
Top
Published in: Flow, Turbulence and Combustion 4/2018

26-04-2018

Predicting Turbulent Spectra in Drag-reduced Flows

Authors: Davide Gatti, Alexander Stroh, Bettina Frohnapfel, Yosuke Hasegawa

Published in: Flow, Turbulence and Combustion | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present work we describe how turbulent skin-friction drag reduction obtained through near-wall turbulence manipulation modifies the spectral content of turbulent fluctuations and Reynolds shear stress with focus on the largest scales. Direct Numerical Simulations (DNS) of turbulent channels up to Re τ = 1000 are performed in which drag reduction is achieved either via artificially removing wall-normal turbulent fluctuations in the vicinity of the wall or via streamwise-travelling waves of spanwise wall velocity. This near-wall turbulence manipulation is shown to modify turbulent spectra in a broad range of scales throughout the whole channel. Above the buffer layer, the observed changes can be predicted, exploiting the vertical shift of the logarithmic portion of the mean streamwise velocity profile, which is a classic performance measure for wall roughness or drag-reducing riblets. A simple model is developed for predicting the large-scale contribution to turbulent fluctuation and Reynolds shear stress spectra in drag-reduced turbulent channels in which a flow control acts at the wall. Any drag-reducing control that successfully interacts with large scales should deviate from the predictions of the present model, making it a useful benchmark for assessing the capability of a control to affect large scales directly.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. A 369(1940), 1428–1442 (2011)CrossRef Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. A 369(1940), 1428–1442 (2011)CrossRef
4.
go back to reference Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)CrossRefMATH Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)CrossRefMATH
5.
go back to reference Bechert, D., Bruse, M., Hage, W., Van der Hoeven, J., Hoppe, G.: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 59–87 (1997)CrossRef Bechert, D., Bruse, M., Hage, W., Van der Hoeven, J., Hoppe, G.: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 59–87 (1997)CrossRef
8.
go back to reference Marusic, I., Mathis, R., Hutchins, N.: High Reynolds number effects in wall turbulence. Int. J. Heat Fluid Flow 31(3), 418–428 (2010)CrossRef Marusic, I., Mathis, R., Hutchins, N.: High Reynolds number effects in wall turbulence. Int. J. Heat Fluid Flow 31(3), 418–428 (2010)CrossRef
11.
go back to reference De Giovannetti, M., Hwang, Y., Choi, H.: Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511–538 (2016)MathSciNetCrossRefMATH De Giovannetti, M., Hwang, Y., Choi, H.: Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511–538 (2016)MathSciNetCrossRefMATH
12.
go back to reference Hwang, Y., Bengana, Y.: Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708–738 (2016)MathSciNetCrossRefMATH Hwang, Y., Bengana, Y.: Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708–738 (2016)MathSciNetCrossRefMATH
13.
go back to reference Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S.: Turbulent boundary layers up to R e 𝜃 =2500 studied through simulation and experiment. Phys. Fluids 21(5), 051702–051702-4 (2009) Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S.: Turbulent boundary layers up to R e 𝜃 =2500 studied through simulation and experiment. Phys. Fluids 21(5), 051702–051702-4 (2009)
15.
go back to reference Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)CrossRefMATH Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)CrossRefMATH
17.
go back to reference Frohnapfel, B., Hasegawa, Y., Quadrio, M.: Money versus time: evaluation of flow control in terms of energy consumption and convenience. J. Fluid Mech. 700, 406–418 (2012)CrossRefMATH Frohnapfel, B., Hasegawa, Y., Quadrio, M.: Money versus time: evaluation of flow control in terms of energy consumption and convenience. J. Fluid Mech. 700, 406–418 (2012)CrossRefMATH
18.
go back to reference Fukagata, K., Kazuyasu, S., Kasagi, N.: On the lower bound of net driving power in controlled duct flows. Phys. D 238(13), 1082–1086 (2009)MathSciNetCrossRefMATH Fukagata, K., Kazuyasu, S., Kasagi, N.: On the lower bound of net driving power in controlled duct flows. Phys. D 238(13), 1082–1086 (2009)MathSciNetCrossRefMATH
19.
go back to reference Gatti, D., Quadrio, M.: Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys. Fluids 25(17), 125,109 (2013)CrossRef Gatti, D., Quadrio, M.: Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys. Fluids 25(17), 125,109 (2013)CrossRef
20.
go back to reference Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–58 (2016)MathSciNetCrossRef Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–58 (2016)MathSciNetCrossRef
21.
go back to reference Hurst, E., Yang, Q., Chung, Y.: The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55 (2014)CrossRef Hurst, E., Yang, Q., Chung, Y.: The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55 (2014)CrossRef
23.
go back to reference Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from dns-predicted phase-wise property variations at R e τ = 1000. J. Fluid Mech. 743, 606–635 (2014)CrossRef Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from dns-predicted phase-wise property variations at R e τ = 1000. J. Fluid Mech. 743, 606–635 (2014)CrossRef
24.
go back to reference Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefMATH Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefMATH
25.
go back to reference del Álamo, J., Jiménez, J.: Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15(6), L41–L44 (2003)CrossRefMATH del Álamo, J., Jiménez, J.: Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15(6), L41–L44 (2003)CrossRefMATH
26.
go back to reference Hutchins, N., Marusic, I.: Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365(1852), 647–664 (2007)CrossRefMATH Hutchins, N., Marusic, I.: Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365(1852), 647–664 (2007)CrossRefMATH
28.
go back to reference Fukagata I., Kobayashi, M., Kasagi, N.: On the friction drag reduction effect by a control of large-scale turbulent structures. J. Fluid Sci. Tech. 5(3), 574–584 (2010)CrossRef Fukagata I., Kobayashi, M., Kasagi, N.: On the friction drag reduction effect by a control of large-scale turbulent structures. J. Fluid Sci. Tech. 5(3), 574–584 (2010)CrossRef
29.
go back to reference Hasegawa, Y., Quadrio, M., Frohnapfel, B.: Numerical simulation of turbulent duct flows with constant power input. J. Fluid Mech. 750, 191–209 (2014)CrossRef Hasegawa, Y., Quadrio, M., Frohnapfel, B.: Numerical simulation of turbulent duct flows with constant power input. J. Fluid Mech. 750, 191–209 (2014)CrossRef
30.
go back to reference Auteri, F., Baron, A., Belan, M., Campanardi, G., Quadrio, M.: Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22(11), 115,103/14 (2010)CrossRef Auteri, F., Baron, A., Belan, M., Campanardi, G., Quadrio, M.: Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22(11), 115,103/14 (2010)CrossRef
31.
go back to reference Bird, J., Santer, M., Morrison, J.F.: Experimental control of turbulent boundary layers with in-plane travelling waves. Flow Turb Comb submitted (2018) Bird, J., Santer, M., Morrison, J.F.: Experimental control of turbulent boundary layers with in-plane travelling waves. Flow Turb Comb submitted (2018)
32.
33.
go back to reference Jung, W., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)CrossRef Jung, W., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)CrossRef
34.
go back to reference Schlichting, H.: Boundary-layer theory. McGraw Hill.Inc., New York (1979)MATH Schlichting, H.: Boundary-layer theory. McGraw Hill.Inc., New York (1979)MATH
35.
go back to reference Luchini, P., Quadrio, M.: A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys. 211(2), 551–571 (2006)CrossRefMATH Luchini, P., Quadrio, M.: A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys. 211(2), 551–571 (2006)CrossRefMATH
38.
go back to reference Marusic, I., Joseph, D.D., Mahesh, K.: Laminar and turbulent comparisons for channel flow and flow control. J. Fluid Mech. 570, 467–477 (2007)MathSciNetCrossRefMATH Marusic, I., Joseph, D.D., Mahesh, K.: Laminar and turbulent comparisons for channel flow and flow control. J. Fluid Mech. 570, 467–477 (2007)MathSciNetCrossRefMATH
39.
40.
go back to reference Mizuno, J., Jiménez, J.: Mean velocity and length-scales in the overlap region of wall-bounded turbulent flows. Phys. Fluids 23(8), 085,112 (2011)CrossRef Mizuno, J., Jiménez, J.: Mean velocity and length-scales in the overlap region of wall-bounded turbulent flows. Phys. Fluids 23(8), 085,112 (2011)CrossRef
41.
go back to reference Clauser, F.: The turbulent boundary layer. Adv. Appl. Mech. 4, 1–51 (1956)CrossRef Clauser, F.: The turbulent boundary layer. Adv. Appl. Mech. 4, 1–51 (1956)CrossRef
43.
go back to reference García-Mayoral, R., Jiménez, J.: Drag reduction by riblets. Phil. Trans. R. Soc. A 369(1940), 1412–1427 (2011)CrossRef García-Mayoral, R., Jiménez, J.: Drag reduction by riblets. Phil. Trans. R. Soc. A 369(1940), 1412–1427 (2011)CrossRef
44.
go back to reference Luchini, P.: Reducing the turbulent skin friction. In: Desideri et al. (eds.) Computational methods in applied sciences, p 1996. Wiley, Hoboken (1996) Luchini, P.: Reducing the turbulent skin friction. In: Desideri et al. (eds.) Computational methods in applied sciences, p 1996. Wiley, Hoboken (1996)
45.
go back to reference Luchini, P., Manzo, F., Pozzi, A.: Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87–109 (1991)MATH Luchini, P., Manzo, F., Pozzi, A.: Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87–109 (1991)MATH
47.
go back to reference Spalart, P., McLean, J.: Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. A 369(1940), 1556–1569 (2011)CrossRef Spalart, P., McLean, J.: Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. A 369(1940), 1556–1569 (2011)CrossRef
49.
go back to reference Townsend, A.: The structure of turbulent shear flows, 2nd edn. Cambridge University Press, Cambridge (1976)MATH Townsend, A.: The structure of turbulent shear flows, 2nd edn. Cambridge University Press, Cambridge (1976)MATH
51.
go back to reference Cimarelli, A., De Angelis, E., Jiménez, J., Casciola, C.M.: Cascades and wall-normal fluxes in turbulent channel flows. J. Fluid Mech. 796, 417–436 (2016)CrossRef Cimarelli, A., De Angelis, E., Jiménez, J., Casciola, C.M.: Cascades and wall-normal fluxes in turbulent channel flows. J. Fluid Mech. 796, 417–436 (2016)CrossRef
52.
go back to reference Agostini, L., Leschziner, M.: The influence of outer large-scale structures on the near-wall layer of a channel flow subjected to oscillatory spanwise wall actuation. Flow Turb Comb submitted (2018) Agostini, L., Leschziner, M.: The influence of outer large-scale structures on the near-wall layer of a channel flow subjected to oscillatory spanwise wall actuation. Flow Turb Comb submitted (2018)
53.
go back to reference Schlichting, H.: Experimentelle Untersuchungen zum Rauhigkeitsproblem. Ing. Arch. 7, 1–34 (1936). (Engl. Trans. 1937. Experimental investigation of the problem of surface roughness, NACA TM 823)CrossRef Schlichting, H.: Experimentelle Untersuchungen zum Rauhigkeitsproblem. Ing. Arch. 7, 1–34 (1936). (Engl. Trans. 1937. Experimental investigation of the problem of surface roughness, NACA TM 823)CrossRef
54.
go back to reference Skote, M.M.M., Wu, Y.: Drag reduction of a turbulent boundary layer over an oscillating wall and its variation with reynolds number. Intl. J. Aerospace Eng. 2015, 1–9 (2015)CrossRef Skote, M.M.M., Wu, Y.: Drag reduction of a turbulent boundary layer over an oscillating wall and its variation with reynolds number. Intl. J. Aerospace Eng. 2015, 1–9 (2015)CrossRef
Metadata
Title
Predicting Turbulent Spectra in Drag-reduced Flows
Authors
Davide Gatti
Alexander Stroh
Bettina Frohnapfel
Yosuke Hasegawa
Publication date
26-04-2018
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 4/2018
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9920-8

Other articles of this Issue 4/2018

Flow, Turbulence and Combustion 4/2018 Go to the issue

Premium Partners