Skip to main content
Top
Published in: Journal of Iron and Steel Research International 9/2020

17-07-2020 | Original Paper

Prediction model for mechanical properties of hot-rolled strips by deep learning

Authors: Wei-gang Li, Lu Xie, Yun-tao Zhao, Zi-xiang Li, Wen-bo Wang

Published in: Journal of Iron and Steel Research International | Issue 9/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The prediction of the mechanical properties of hot-rolled strips is a very complex, highly dimensional and nonlinear problem, and the published models might lack reliability, practicability and generalization. Thus, a new model was proposed for predicting the mechanical properties of hot-rolled strips by deep learning. First, the one-dimensional numerical data were transformed into two-dimensional data for expressing the complex interaction between the influencing factors. Subsequently, a new convolutional network was proposed to establish the prediction model of tensile strength of hot-rolled strips, and an improved inception module was introduced into this network to abstract features from different scales. Many comparative experiments were carried out to find the optimal network structure and its hyperparameters. Finally, the prediction experiments were carried out on different models to evaluate the performance of the new convolutional network, which includes the stepwise regression, ridge regression, support vector machine, random forest, shallow neural network, Bayesian neural network, deep feed-forward network and improved LeNet-5 convolutional neural network. The results show that the proposed convolutional network has better prediction accuracy of the mechanical properties of hot-rolled strips compared with other models.
Literature
[1]
go back to reference S.M. Azimi, D. Britz, M. Engstler, M. Fritz, F. Mücklich, Sci. Rep. 8 (2018) 2128.CrossRef S.M. Azimi, D. Britz, M. Engstler, M. Fritz, F. Mücklich, Sci. Rep. 8 (2018) 2128.CrossRef
[2]
go back to reference W.G. Li, W. Yang, Y.T. Zhao, G. Xu, X.H. Liu, J. Iron Steel Res. Int. 26 (2019) 230–241.CrossRef W.G. Li, W. Yang, Y.T. Zhao, G. Xu, X.H. Liu, J. Iron Steel Res. Int. 26 (2019) 230–241.CrossRef
[3]
go back to reference W.G. Li, W. Yang, Y.T. Zhao, H.F. Hu, J. Iron Steel Res. Int. 30 (2018) 302–308. W.G. Li, W. Yang, Y.T. Zhao, H.F. Hu, J. Iron Steel Res. Int. 30 (2018) 302–308.
[4]
go back to reference G. Khalaj, T. Azimzadegan, M. Khoeini, M. Etaat, Neural Comput. Appl. 23 (2013) 2301–2308.CrossRef G. Khalaj, T. Azimzadegan, M. Khoeini, M. Etaat, Neural Comput. Appl. 23 (2013) 2301–2308.CrossRef
[6]
go back to reference S.W. Wu, G.M. Cao, X.G. Zhou, N.A. Shi, Z.Y. Liu, ISIJ Int. 57 (2017) 1213–1220.CrossRef S.W. Wu, G.M. Cao, X.G. Zhou, N.A. Shi, Z.Y. Liu, ISIJ Int. 57 (2017) 1213–1220.CrossRef
[7]
go back to reference S.W. Wu, J.K. Ren, X.G. Zhou, G.M. Cao, Z.Y. Liu, J. Yang, Trans. Indian Inst. Met. 72 (2019) 1277-1288.CrossRef S.W. Wu, J.K. Ren, X.G. Zhou, G.M. Cao, Z.Y. Liu, J. Yang, Trans. Indian Inst. Met. 72 (2019) 1277-1288.CrossRef
[8]
go back to reference S.W. Wu, Z.Y. Liu, X.G. Zhou, N.A. Shi, J. Iron Steel Res. Int. 28 (2016) 1–4. S.W. Wu, Z.Y. Liu, X.G. Zhou, N.A. Shi, J. Iron Steel Res. Int. 28 (2016) 1–4.
[9]
go back to reference Y.H. Zhao, Y. Weng, N.Q. Peng, G.B. Tang, Z.D. Liu, J. Iron Steel Res. Int. 20 (2013) No. 7, 9–15.CrossRef Y.H. Zhao, Y. Weng, N.Q. Peng, G.B. Tang, Z.D. Liu, J. Iron Steel Res. Int. 20 (2013) No. 7, 9–15.CrossRef
[10]
go back to reference A. Noroozi, M. Ayaz, N.B. Mostafa Arab, D. Mirahmadi Khaki, Metall. Res. Technol. 110 (2013) 359–371. A. Noroozi, M. Ayaz, N.B. Mostafa Arab, D. Mirahmadi Khaki, Metall. Res. Technol. 110 (2013) 359–371.
[11]
go back to reference L. Čiripová, E. Hryha, E. Dudrová, A. Výrostková, Mater. Des. 35 (2012) 619–625.CrossRef L. Čiripová, E. Hryha, E. Dudrová, A. Výrostková, Mater. Des. 35 (2012) 619–625.CrossRef
[12]
go back to reference D. Šimek, A. Oswald, R. Schmidtchen, M. Motylenko, G. Lehmann, D. Rafaja, Steel Res. Int. 85 (2014) 1369–1378.CrossRef D. Šimek, A. Oswald, R. Schmidtchen, M. Motylenko, G. Lehmann, D. Rafaja, Steel Res. Int. 85 (2014) 1369–1378.CrossRef
[13]
[14]
go back to reference C.Z. Zhang, B.M. Gong, C.Y. Deng, D.P. Wang, Mater. Sci. Eng. A 685 (2017) 310–316.CrossRef C.Z. Zhang, B.M. Gong, C.Y. Deng, D.P. Wang, Mater. Sci. Eng. A 685 (2017) 310–316.CrossRef
[15]
go back to reference M. Alibeyki, H. Mirzadeh, M. Najafi, A. Kalhor, J. Mater. Eng. Perform. 26 (2017) 2683–2688.CrossRef M. Alibeyki, H. Mirzadeh, M. Najafi, A. Kalhor, J. Mater. Eng. Perform. 26 (2017) 2683–2688.CrossRef
[16]
[17]
go back to reference O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, F.F. Li, Int. J. Comput. Vision 115 (2015) 211-252.MathSciNetCrossRef O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, F.F. Li, Int. J. Comput. Vision 115 (2015) 211-252.MathSciNetCrossRef
[18]
go back to reference A. Krizhevsky, I. Sutskever, G.E. Hinton, in: P. Bartlett (Eds.), NIPS. Conference and Workshop on Neural Information Processing Systems, Neural Information Processing Systems Foundation, Inc., Lake Tahoe, USA, 2012, pp. 1106–1114. A. Krizhevsky, I. Sutskever, G.E. Hinton, in: P. Bartlett (Eds.), NIPS. Conference and Workshop on Neural Information Processing Systems, Neural Information Processing Systems Foundation, Inc., Lake Tahoe, USA, 2012, pp. 1106–1114.
[19]
go back to reference T. Hu, M. Yang, W.Q. Yang, A.S. Li, Int. J. Mach. Learn. Cyb. 10 (2019) 1909–1924.CrossRef T. Hu, M. Yang, W.Q. Yang, A.S. Li, Int. J. Mach. Learn. Cyb. 10 (2019) 1909–1924.CrossRef
[20]
go back to reference M. Abadi, in: M. Abadi (Eds.), ICFP. The 21st ACM SIGPLAN International Conference on Functional Programming, Association for Computing Machinery, New York, USA, 2016. M. Abadi, in: M. Abadi (Eds.), ICFP. The 21st ACM SIGPLAN International Conference on Functional Programming, Association for Computing Machinery, New York, USA, 2016.
[21]
go back to reference W. Yang, W.G. Li, Y.T. Zhao, B. Yan, W. Wang, Iron and Steel 53 (2018) No. 3, 44–49. W. Yang, W.G. Li, Y.T. Zhao, B. Yan, W. Wang, Iron and Steel 53 (2018) No. 3, 44–49.
[22]
go back to reference N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, J. Mach. Learn Res. 15 (2014) 1929–1958.MathSciNet N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, J. Mach. Learn Res. 15 (2014) 1929–1958.MathSciNet
Metadata
Title
Prediction model for mechanical properties of hot-rolled strips by deep learning
Authors
Wei-gang Li
Lu Xie
Yun-tao Zhao
Zi-xiang Li
Wen-bo Wang
Publication date
17-07-2020
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 9/2020
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00450-9

Other articles of this Issue 9/2020

Journal of Iron and Steel Research International 9/2020 Go to the issue

Premium Partners