Skip to main content
Top
Published in: European Journal of Wood and Wood Products 5/2022

04-06-2022 | Original Article

Prediction of water absorption and swelling of thermally modified fir wood by artificial neural network models

Authors: Akbar Rostampour Haftkhani, Farshid Abdoli, Iman Rashidijouybari, Rosilei A. Garcia

Published in: European Journal of Wood and Wood Products | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Classification is a useful tool for analyzing the quality control of thermally modified timber. This study aimed to predict water absorption and swelling of thermally modified solid fir wood (Abies sp.) by single and multiple input artificial neural networks (ANN) models based on the lightness difference (∆L*), the total color difference (∆E*), contact angle, and mass loss. Water absorption, swelling in longitudinal (αL), radial (αR), and tangential (αT) directions, as well as volumetric swelling (αV), were measured after 24 h of water soaking. The lowest mean absolute percentage error (MAPE) for the prediction of water absorption by the single input ANN model was 3.910%, based on mass loss. Moreover, for the prediction of αR, αT, and αV by the single input ANN model, it was 3.104%, 3.386%, and 2.755% based on ∆E*, mass loss, and contact angle, respectively. While MAPE values for the prediction of water absorption, αR, αT, and αV by multiple input ANN models were 2.424%, 3.152%, 3.115%, and 2.067%, respectively. These levels of errors are satisfactory for predicting water absorption and swelling of thermally modified fir wood by the ANN models (MAPE < 10%). The difference between MAPE values of the single and multiple input ANN models based on different predictors was smaller than 3%. In terms of time and cost measurement, simple measurement, single input ANN model with color change, especially ∆L* and ∆E* as a predictor, could be the best item. From this viewpoint, the next preferred predictor could be contact angle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allegretti O, Brunetti M, Cuccui I, Ferrari S, Nocetti M, Terziev N (2012) Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood. BioResources 7(3):3656–3669 Allegretti O, Brunetti M, Cuccui I, Ferrari S, Nocetti M, Terziev N (2012) Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood. BioResources 7(3):3656–3669
go back to reference ASTM A (2009) D143-09: standard test methods for small clear specimens of timber. ASTM International, West Conshohocken ASTM A (2009) D143-09: standard test methods for small clear specimens of timber. ASTM International, West Conshohocken
go back to reference ASTM D (2003) 2244. Standard practice for calculation of color tolerances and color differences from instrumentally measured color coordinates. American Society for Testing and Materials, West Conshohocken ASTM D (2003) 2244. Standard practice for calculation of color tolerances and color differences from instrumentally measured color coordinates. American Society for Testing and Materials, West Conshohocken
go back to reference Ayanleye S, Nasir V, Avramidis S, Cool J (2021) Effect of wood surface roughness on prediction of structural timber properties by infrared spectroscopy using ANFIS, ANN and PLS regression. Eur J Wood Prod 79(1):101–115CrossRef Ayanleye S, Nasir V, Avramidis S, Cool J (2021) Effect of wood surface roughness on prediction of structural timber properties by infrared spectroscopy using ANFIS, ANN and PLS regression. Eur J Wood Prod 79(1):101–115CrossRef
go back to reference Aydin G, Karakurt I, Hamzacebi C (2015) Performance prediction of diamond sawblades using artificial neural network and regression analysis. Arab J Sci Eng 40(7):2003–2012CrossRef Aydin G, Karakurt I, Hamzacebi C (2015) Performance prediction of diamond sawblades using artificial neural network and regression analysis. Arab J Sci Eng 40(7):2003–2012CrossRef
go back to reference Bakar BFA, Hiziroglu S, Tahir PM (2013) Properties of some thermally modified wood species. Mater Des 43:348–355CrossRef Bakar BFA, Hiziroglu S, Tahir PM (2013) Properties of some thermally modified wood species. Mater Des 43:348–355CrossRef
go back to reference Bal BC (2018) A Comparative study of some of the mechanical properties of pine wood heat treated in vacuum, nitrogen, and air atmospheres. BioResources 13(3):5504–5511CrossRef Bal BC (2018) A Comparative study of some of the mechanical properties of pine wood heat treated in vacuum, nitrogen, and air atmospheres. BioResources 13(3):5504–5511CrossRef
go back to reference Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5):539–546CrossRef Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5):539–546CrossRef
go back to reference Brischke C, Welzbacher CR, Brandt K, Rapp AO (2007) Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L* a* b* color data on homogenized wood samples. Holzforschung 61(1):19–22CrossRef Brischke C, Welzbacher CR, Brandt K, Rapp AO (2007) Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L* a* b* color data on homogenized wood samples. Holzforschung 61(1):19–22CrossRef
go back to reference Calonego FW, Severo ETD, Ballarin AW (2012) Physical and mechanical properties of thermally modified wood from E. grandis. Eur J Wood Prod 70(4):453–460CrossRef Calonego FW, Severo ETD, Ballarin AW (2012) Physical and mechanical properties of thermally modified wood from E. grandis. Eur J Wood Prod 70(4):453–460CrossRef
go back to reference Chotikhun A, Hiziroglu S (2016) Measurement of dimensional stability of heat treated southern red oak (Quercus falcata Michx.). Measurement 87:99–103CrossRef Chotikhun A, Hiziroglu S (2016) Measurement of dimensional stability of heat treated southern red oak (Quercus falcata Michx.). Measurement 87:99–103CrossRef
go back to reference Ding T, Wang C, Peng W (2016) A theoretical study of moisture sorption behavior of heat-treated pine wood using Raman spectroscopic analysis. J for Eng 1(5):15–19 Ding T, Wang C, Peng W (2016) A theoretical study of moisture sorption behavior of heat-treated pine wood using Raman spectroscopic analysis. J for Eng 1(5):15–19
go back to reference Ding T, Peng W, Li T (2017) Mechanism of color change of heat-treated white ash wood by means of FT-IR and XPS analyses. J for Eng 2(5):25–30 Ding T, Peng W, Li T (2017) Mechanism of color change of heat-treated white ash wood by means of FT-IR and XPS analyses. J for Eng 2(5):25–30
go back to reference Dubey MK, Pang S, Walker J (2011) Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment. Holzforschung 66(1):49–57 Dubey MK, Pang S, Walker J (2011) Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment. Holzforschung 66(1):49–57
go back to reference Fengel D, Wegener G (2011) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin Fengel D, Wegener G (2011) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin
go back to reference Fu Z, Zhou Y, Gao X, Liu H, Zhou F (2019) Changes of water related properties in radiata pine wood due to heat treatment. Constr Build Mater 227:116692CrossRef Fu Z, Zhou Y, Gao X, Liu H, Zhou F (2019) Changes of water related properties in radiata pine wood due to heat treatment. Constr Build Mater 227:116692CrossRef
go back to reference Fu Z, Zhou F, Gao X, Weng X, Zhou Y (2020) Assessment of mechanical properties based on the changes of chromatic values in heat treatment wood. Measurement 152:107215CrossRef Fu Z, Zhou F, Gao X, Weng X, Zhou Y (2020) Assessment of mechanical properties based on the changes of chromatic values in heat treatment wood. Measurement 152:107215CrossRef
go back to reference Garcia RA, de Carvalho AM, de Figueiredo Latorraca JV, de Matos JLM, Santos WA, de Medeiros Silva RF (2012) Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Sci Technol 46(1):41–52CrossRef Garcia RA, de Carvalho AM, de Figueiredo Latorraca JV, de Matos JLM, Santos WA, de Medeiros Silva RF (2012) Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Sci Technol 46(1):41–52CrossRef
go back to reference Gonzalez de Cademartori PH, Schneid E, Gatto DA, Martins Stangerlin D, Beltrame R (2013) Thermal modification of Eucalyptus grandis wood: variation of colorimetric parameters. Maderas Ciencia y Tecnología 15(1):57–64 Gonzalez de Cademartori PH, Schneid E, Gatto DA, Martins Stangerlin D, Beltrame R (2013) Thermal modification of Eucalyptus grandis wood: variation of colorimetric parameters. Maderas Ciencia y Tecnología 15(1):57–64
go back to reference Gunduz G, Aydemir D, Karakas G (2009) The effects of thermal treatment on the mechanical properties of wild Pear (Pyrus elaeagnifolia Pall.) wood and changes in physical properties. Mater Des 30(10):4391–4395CrossRef Gunduz G, Aydemir D, Karakas G (2009) The effects of thermal treatment on the mechanical properties of wild Pear (Pyrus elaeagnifolia Pall.) wood and changes in physical properties. Mater Des 30(10):4391–4395CrossRef
go back to reference Haghbakhsh R, Adib H, Keshavarz P, Koolivand M, Keshtkari S (2013) Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions. Thermochim Acta 551:124–130CrossRef Haghbakhsh R, Adib H, Keshavarz P, Koolivand M, Keshtkari S (2013) Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions. Thermochim Acta 551:124–130CrossRef
go back to reference Hakkou M, Pétrissans M, El Bakali I, Gérardin P, Zoulalian A (2005a) Wettability changes and mass loss during heat treatment of wood. Holzforschung 59(1):35–37CrossRef Hakkou M, Pétrissans M, El Bakali I, Gérardin P, Zoulalian A (2005a) Wettability changes and mass loss during heat treatment of wood. Holzforschung 59(1):35–37CrossRef
go back to reference Hakkou M, Pétrissans M, Zoulalian A, Gérardin P (2005b) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stab 89(1):1–5CrossRef Hakkou M, Pétrissans M, Zoulalian A, Gérardin P (2005b) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stab 89(1):1–5CrossRef
go back to reference Hill CA (2007) Wood modification: chemical, thermal and other processes, vol 5. Wiley, New York Hill CA (2007) Wood modification: chemical, thermal and other processes, vol 5. Wiley, New York
go back to reference Hiltunen E, Pakkanen TT, Alvila L (2006) Phenolic compounds in silver birch (Betula pendula Roth) wood. Holzforschung 60(5):519–527CrossRef Hiltunen E, Pakkanen TT, Alvila L (2006) Phenolic compounds in silver birch (Betula pendula Roth) wood. Holzforschung 60(5):519–527CrossRef
go back to reference Hinterstoisser B, Schwanninger M, Stefke B, Stingl R, Patzelt M (2003) Surface analyses of chemically and thermally modified wood by FT-NIR. In: Acker VJ, Hill C (eds) The 1st European conference on wood modification. Proceeding of the first international conference of the European society for wood mechanics. pp 15–20 Hinterstoisser B, Schwanninger M, Stefke B, Stingl R, Patzelt M (2003) Surface analyses of chemically and thermally modified wood by FT-NIR. In: Acker VJ, Hill C (eds) The 1st European conference on wood modification. Proceeding of the first international conference of the European society for wood mechanics. pp 15–20
go back to reference Huang X, Kocaefe D, Boluk Y, Kocaefe Y, Pichette A (2012) Effect of surface preparation on the wettability of heat-treated jack pine wood surface by different liquids. Eur J Wood Prod 70(5):711–717CrossRef Huang X, Kocaefe D, Boluk Y, Kocaefe Y, Pichette A (2012) Effect of surface preparation on the wettability of heat-treated jack pine wood surface by different liquids. Eur J Wood Prod 70(5):711–717CrossRef
go back to reference Kocaefe D, Poncsak S, Doré G, Younsi R (2008) Effect of heat treatment on the wettability of white ash and soft maple by water. Holz Roh Werkst 66(5):355–361CrossRef Kocaefe D, Poncsak S, Doré G, Younsi R (2008) Effect of heat treatment on the wettability of white ash and soft maple by water. Holz Roh Werkst 66(5):355–361CrossRef
go back to reference Korkut DS, Guller B (2008) The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood. Bioresour Technol 99(8):2846–2851PubMedCrossRef Korkut DS, Guller B (2008) The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood. Bioresour Technol 99(8):2846–2851PubMedCrossRef
go back to reference Korkut S, Hiziroglu S (2009) Effect of heat treatment on mechanical properties of hazelnut wood (Corylus colurna L.). Mater Des 30(5):1853–1858CrossRef Korkut S, Hiziroglu S (2009) Effect of heat treatment on mechanical properties of hazelnut wood (Corylus colurna L.). Mater Des 30(5):1853–1858CrossRef
go back to reference Korkut DS, Korkut S, Bekar I, Budakçı M, Dilik T, Çakıcıer N (2008) The effects of heat treatment on the physical properties and surface roughness of Turkish hazel (Corylus colurna L.) wood. Int J Mol Sci 9(9):1772–1783PubMedPubMedCentralCrossRef Korkut DS, Korkut S, Bekar I, Budakçı M, Dilik T, Çakıcıer N (2008) The effects of heat treatment on the physical properties and surface roughness of Turkish hazel (Corylus colurna L.) wood. Int J Mol Sci 9(9):1772–1783PubMedPubMedCentralCrossRef
go back to reference Kučerová V, Lagaňa R, Výbohová E, Hýrošová T (2016) The effect of chemical changes during heat treatment on the color and mechanical properties of fir wood. BioResources 11(4):9079–9094CrossRef Kučerová V, Lagaňa R, Výbohová E, Hýrošová T (2016) The effect of chemical changes during heat treatment on the color and mechanical properties of fir wood. BioResources 11(4):9079–9094CrossRef
go back to reference Lee SH, Ashaari Z, Lum WC, Halip JA, Ang AF, Tan LP, Chin KL, Tahir PM (2018) Thermal treatment of wood using vegetable oils: a review. Constr Build Mater 181:408–419CrossRef Lee SH, Ashaari Z, Lum WC, Halip JA, Ang AF, Tan LP, Chin KL, Tahir PM (2018) Thermal treatment of wood using vegetable oils: a review. Constr Build Mater 181:408–419CrossRef
go back to reference Lewis C (1982) International and business forecasting methods. Butterworths, London Lewis C (1982) International and business forecasting methods. Butterworths, London
go back to reference Li T, Cheng D-l, Avramidis S, Wålinder ME, Zhou D-g (2017) Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood. Constr Build Mater 144:671–676CrossRef Li T, Cheng D-l, Avramidis S, Wålinder ME, Zhou D-g (2017) Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood. Constr Build Mater 144:671–676CrossRef
go back to reference Lopes JdO, Garcia RA, Nascimento AMd (2018) Wettability of the surface of heat-treated juvenile teak wood assessed by drop shape analyzer. Maderas Ciencia y Tecnología 20(2):249–256 Lopes JdO, Garcia RA, Nascimento AMd (2018) Wettability of the surface of heat-treated juvenile teak wood assessed by drop shape analyzer. Maderas Ciencia y Tecnología 20(2):249–256
go back to reference Matsuo M, Yokoyama M, Umemura K, Gril J, Ki Y, Kawai S (2010) Color changes in wood during heating: kinetic analysis by applying a time-temperature superposition method. Appl Phys Res 99(1):47–52CrossRef Matsuo M, Yokoyama M, Umemura K, Gril J, Ki Y, Kawai S (2010) Color changes in wood during heating: kinetic analysis by applying a time-temperature superposition method. Appl Phys Res 99(1):47–52CrossRef
go back to reference Metsä-Kortelainen S, Antikainen T, Viitaniemi P (2006) The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 C, 190 C, 210 C and 230 C. Holz Roh Werkst 64(3):192–197CrossRef Metsä-Kortelainen S, Antikainen T, Viitaniemi P (2006) The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 C, 190 C, 210 C and 230 C. Holz Roh Werkst 64(3):192–197CrossRef
go back to reference Mirzaei G, Mohebby B, Tasooji M (2012) The effect of hydrothermal treatment on bond shear strength of beech wood. Eur J Wood Prod 70(5):705–709CrossRef Mirzaei G, Mohebby B, Tasooji M (2012) The effect of hydrothermal treatment on bond shear strength of beech wood. Eur J Wood Prod 70(5):705–709CrossRef
go back to reference Mirzaei G, Mohebby B, Ebrahimi G (2017) Glulam beam made from hydrothermally treated poplar wood with reduced moisture induced stresses. Constr Build Mater 135:386–393CrossRef Mirzaei G, Mohebby B, Ebrahimi G (2017) Glulam beam made from hydrothermally treated poplar wood with reduced moisture induced stresses. Constr Build Mater 135:386–393CrossRef
go back to reference Mohebby B, Sanaei I (2005) Influences of the hydro-thermal treatment on physical properties of beech wood (Fagus orientalis). In: Annual Meeting, Bangalore Mohebby B, Sanaei I (2005) Influences of the hydro-thermal treatment on physical properties of beech wood (Fagus orientalis). In: Annual Meeting, Bangalore
go back to reference Nasir V, Nourian S, Avramidis S, Cool J (2019a) Prediction of physical and mechanical properties of thermally modified wood based on color change evaluated by means of “group method of data handling”(GMDH) neural network. Holzforschung 73(4):381–392 CrossRef Nasir V, Nourian S, Avramidis S, Cool J (2019a) Prediction of physical and mechanical properties of thermally modified wood based on color change evaluated by means of “group method of data handling”(GMDH) neural network. Holzforschung 73(4):381–392 CrossRef
go back to reference Nasir V, Nourian S, Avramidis S, Cool J (2019b) Classification of thermally treated wood using machine learning techniques. Wood Sci Technol 53(1):275–288CrossRef Nasir V, Nourian S, Avramidis S, Cool J (2019b) Classification of thermally treated wood using machine learning techniques. Wood Sci Technol 53(1):275–288CrossRef
go back to reference Nasir V, Nourian S, Avramidis S, Cool J (2019c) Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. Holzforschung 73(9):827–838CrossRef Nasir V, Nourian S, Avramidis S, Cool J (2019c) Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. Holzforschung 73(9):827–838CrossRef
go back to reference Nasir V, Nourian S, Zhou Z, Rahimi S, Avramidis S, Cool J (2019d) Classification and characterization of thermally modified timber using visible and near-infrared spectroscopy and artificial neural networks: a comparative study on the performance of different NDE methods and ANNs. Wood Sci Technol 53(5):1093–1109CrossRef Nasir V, Nourian S, Zhou Z, Rahimi S, Avramidis S, Cool J (2019d) Classification and characterization of thermally modified timber using visible and near-infrared spectroscopy and artificial neural networks: a comparative study on the performance of different NDE methods and ANNs. Wood Sci Technol 53(5):1093–1109CrossRef
go back to reference Özşahin Ş (2012) The use of an artificial neural network for modeling the moisture absorption and thickness swelling of oriented strand board. BioResources 7(1):1053–1067 Özşahin Ş (2012) The use of an artificial neural network for modeling the moisture absorption and thickness swelling of oriented strand board. BioResources 7(1):1053–1067
go back to reference Patzelt M, Emsenhuber G, Stingl R (2003) Colour measurement as means of quality control of thermally treated wood. In: The European Conference on Wood Modification, Gent, Belgium, pp 213–218 Patzelt M, Emsenhuber G, Stingl R (2003) Colour measurement as means of quality control of thermally treated wood. In: The European Conference on Wood Modification, Gent, Belgium, pp 213–218
go back to reference Poncsák S, Kocaefe D, Bouazara M, Pichette A (2006) Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol 40(8):647–663CrossRef Poncsák S, Kocaefe D, Bouazara M, Pichette A (2006) Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol 40(8):647–663CrossRef
go back to reference Poonia P, Tripathi S (2016) Moisture-related properties of Eucalyptus tereticornis after thermal modification. J Trop For Sci 28(2):153–158 Poonia P, Tripathi S (2016) Moisture-related properties of Eucalyptus tereticornis after thermal modification. J Trop For Sci 28(2):153–158
go back to reference Poubel DdS, Garcia RA, Santos WAd, Oliveira GdL, Abreu HdS (2013) Effect of the heat treatment on physical and chemical properties of Pinus caribaea wood. Cerne 19(3):391–398CrossRef Poubel DdS, Garcia RA, Santos WAd, Oliveira GdL, Abreu HdS (2013) Effect of the heat treatment on physical and chemical properties of Pinus caribaea wood. Cerne 19(3):391–398CrossRef
go back to reference Priadi T, Hiziroglu S (2013) Characterization of heat treated wood species. Mater Des 49:575–582CrossRef Priadi T, Hiziroglu S (2013) Characterization of heat treated wood species. Mater Des 49:575–582CrossRef
go back to reference Rapp AO, Brischke C, Welzbacher CR (2006) Interrelationship between the severity of heat treatments and sieve fractions after impact ball milling: a mechanical test for quality control of thermally modified wood. Holzforschung 60(1):64–70CrossRef Rapp AO, Brischke C, Welzbacher CR (2006) Interrelationship between the severity of heat treatments and sieve fractions after impact ball milling: a mechanical test for quality control of thermally modified wood. Holzforschung 60(1):64–70CrossRef
go back to reference Repellin V, Guyonnet R (2003) Evaluation of heat treated beech by non destructive testing. In: First European Conference on Wood Modification, Ghent, Belgium Repellin V, Guyonnet R (2003) Evaluation of heat treated beech by non destructive testing. In: First European Conference on Wood Modification, Ghent, Belgium
go back to reference Schwanninger M, Hinterstoisser B, Gierlinger N, Wimmer R, Hanger J (2004) Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood. Holz Roh Werkst 62(6):483–485CrossRef Schwanninger M, Hinterstoisser B, Gierlinger N, Wimmer R, Hanger J (2004) Application of Fourier transform near infrared spectroscopy (FT-NIR) to thermally modified wood. Holz Roh Werkst 62(6):483–485CrossRef
go back to reference Sivrikaya H, Tesařová D, Jeřábková E, Can A (2019) Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. J Build Eng 26:100918CrossRef Sivrikaya H, Tesařová D, Jeřábková E, Can A (2019) Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. J Build Eng 26:100918CrossRef
go back to reference Tasdemir C, Hiziroglu S (2014) Measurement of various properties of Southern pine and aspen as function of heat treatment. Measurement 49:91–98CrossRef Tasdemir C, Hiziroglu S (2014) Measurement of various properties of Southern pine and aspen as function of heat treatment. Measurement 49:91–98CrossRef
go back to reference Tiryaki S, Aydın A (2014) An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Constr Build Mater 62:102–108CrossRef Tiryaki S, Aydın A (2014) An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Constr Build Mater 62:102–108CrossRef
go back to reference Tiryaki S, Hamzaçebi C (2014) Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks. Measurement 49:266–274CrossRef Tiryaki S, Hamzaçebi C (2014) Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks. Measurement 49:266–274CrossRef
go back to reference Tiryaki S, Bardak S, Aydin A, Nemli G (2016) Analysis of volumetric swelling and shrinkage of heat treated woods: experimental and artificial neural network modeling approach. Maderas Ciencia y Tecnología 18(3):477–492 Tiryaki S, Bardak S, Aydin A, Nemli G (2016) Analysis of volumetric swelling and shrinkage of heat treated woods: experimental and artificial neural network modeling approach. Maderas Ciencia y Tecnología 18(3):477–492
go back to reference Tomak ED, Ustaomer D, Yildiz S, Pesman E (2014) Changes in surface and mechanical properties of heat treated wood during natural weathering. Measurement 53:30–39CrossRef Tomak ED, Ustaomer D, Yildiz S, Pesman E (2014) Changes in surface and mechanical properties of heat treated wood during natural weathering. Measurement 53:30–39CrossRef
go back to reference Williams P (2001) Near-infrared technology: in the agricultural and food industries. Amer Assn of Cereal Chemists Williams P (2001) Near-infrared technology: in the agricultural and food industries. Amer Assn of Cereal Chemists
go back to reference Yao Q, Cai J (2018) Determination and analysis of moisture adsorption and desorption isotherms of heat-treated Radiata pine. J for Eng 3(3):35–41 Yao Q, Cai J (2018) Determination and analysis of moisture adsorption and desorption isotherms of heat-treated Radiata pine. J for Eng 3(3):35–41
go back to reference Zaman A, Alen R, Kotilainen R (2000) Heat behavior of Pinus sylvestris and Betula pendula at 200–230 C. Wood Fiber Sci 32(2):138–143 Zaman A, Alen R, Kotilainen R (2000) Heat behavior of Pinus sylvestris and Betula pendula at 200–230 C. Wood Fiber Sci 32(2):138–143
go back to reference Zanuncio AJV, Carvalho AG, Da Silva LF, Da Silva MG, Carneiro AdCO, Colodette JL (2017) Prediction of the physical, mechanical and colorimetric properties of Eucalyptus grandis heat-treated wood using artificial neural networks. Sci for 45(113):109–118CrossRef Zanuncio AJV, Carvalho AG, Da Silva LF, Da Silva MG, Carneiro AdCO, Colodette JL (2017) Prediction of the physical, mechanical and colorimetric properties of Eucalyptus grandis heat-treated wood using artificial neural networks. Sci for 45(113):109–118CrossRef
go back to reference Zhou F, Fu Z, Gao X, Zhou Y (2020) Changes in the wood-water interactions of mahogany wood due to heat treatment. Holzforschung 74(9):853–863CrossRef Zhou F, Fu Z, Gao X, Zhou Y (2020) Changes in the wood-water interactions of mahogany wood due to heat treatment. Holzforschung 74(9):853–863CrossRef
Metadata
Title
Prediction of water absorption and swelling of thermally modified fir wood by artificial neural network models
Authors
Akbar Rostampour Haftkhani
Farshid Abdoli
Iman Rashidijouybari
Rosilei A. Garcia
Publication date
04-06-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Wood and Wood Products / Issue 5/2022
Print ISSN: 0018-3768
Electronic ISSN: 1436-736X
DOI
https://doi.org/10.1007/s00107-022-01839-x

Other articles of this Issue 5/2022

European Journal of Wood and Wood Products 5/2022 Go to the issue