Skip to main content
Top

2011 | OriginalPaper | Chapter

2. Predictive Technology Model of Conventional CMOS Devices

Author : Yu Cao

Published in: Predictive Technology Model for Robust Nanoelectronic Design

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bulk CMOS has been the dominant device structure for integrated circuit design during the past decades, because of its excellent scalability. It is expected that such a device type will continue toward the 10 nm regime. To efficiently predict the characteristics of future bulk CMOS, the scaling trends of primary model parameters, such as the threshold voltage and gate dielectric thickness, need to be identified; their association in determining major device characteristics should be well included for accurate model projection. In this chapter, a new generation of Predictive Technology Model (PTM) for conventional CMOS technology is presented to accomplish these goals. Based on a set of essential device models and early stage silicon data, PTM of bulk CMOS is successfully generated down to the 12 nm node. The accuracy of PTM predictions is comprehensively verified with published silicon data: the error of Ion is below 10% for both NMOS and PMOS devices. By tuning only ten primary model parameters, PTM can be easily customized to cover a wide range of process uncertainties. Furthermore, PTM correctly captures the sensitivity to process variations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference “BSIM4 Manual,” University of California, Berkeley, 2005. “BSIM4 Manual,” University of California, Berkeley, 2005.
3.
go back to reference Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu, “New paradigm of predictive MOSFET and interconnect modeling for early circuit simulation,” CICC, pp. 201–204, 2000. Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu, “New paradigm of predictive MOSFET and interconnect modeling for early circuit simulation,” CICC, pp. 201–204, 2000.
4.
go back to reference D. Boning and S. Nassif, “Models of process variations in device and interconnect,” Design of High-Peformance Microprocessor Circuits, Chapter 6, pp. 98–115, IEEE Press, 2000. D. Boning and S. Nassif, “Models of process variations in device and interconnect,” Design of High-Peformance Microprocessor Circuits, Chapter 6, pp. 98–115, IEEE Press, 2000.
5.
go back to reference M. Miyama, S. Kamohara, M. Hiraki, K. Onozawa, and H. Kunitomo, “Pre-silicon parameter generation methodology using BSIM3 for circuit performance-oriented device optimization,” IEEE Trans. Semiconductor Manufacturing, vol. 14, no. 2, pp. 134–142, May 2001.CrossRef M. Miyama, S. Kamohara, M. Hiraki, K. Onozawa, and H. Kunitomo, “Pre-silicon parameter generation methodology using BSIM3 for circuit performance-oriented device optimization,” IEEE Trans. Semiconductor Manufacturing, vol. 14, no. 2, pp. 134–142, May 2001.CrossRef
6.
go back to reference M. Orshansky, J. An, C. Jiang, B. Liu, C. Riccobene and C. Hu, “Efficient generation of pre-silicon MOS model parameters for early circuit design,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 156–159, Jan. 2001.CrossRef M. Orshansky, J. An, C. Jiang, B. Liu, C. Riccobene and C. Hu, “Efficient generation of pre-silicon MOS model parameters for early circuit design,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 156–159, Jan. 2001.CrossRef
7.
go back to reference K. Vasanth, et al., “Predictive BSIM3v3 modeling for the 0.15-0.18 μm CMOS technology node: A process DOE based approach,” IEDM Tech. Dig., pp. 353–356, 1999. K. Vasanth, et al., “Predictive BSIM3v3 modeling for the 0.15-0.18 μm CMOS technology node: A process DOE based approach,” IEDM Tech. Dig., pp. 353–356, 1999.
8.
go back to reference W. Zhao, Y. Cao, “New generation of predictive technology model for sub-45 nm early design exploration,” IEEE Transactions on Electron Devices, vol. 53, no. 11, pp. 2816–2823, Nov. 2006. (Available at http://ptm.asu.edu)CrossRef W. Zhao, Y. Cao, “New generation of predictive technology model for sub-45 nm early design exploration,” IEEE Transactions on Electron Devices, vol. 53, no. 11, pp. 2816–2823, Nov. 2006. (Available at http://​ptm.​asu.​edu)CrossRef
9.
go back to reference D. Sinitsky, “Physics of future very large-sclae integration (VLSI) MOSFETs,” Ph. D. dissertation, Univ. of California, Berkeley, 1997. D. Sinitsky, “Physics of future very large-sclae integration (VLSI) MOSFETs,” Ph. D. dissertation, Univ. of California, Berkeley, 1997.
10.
go back to reference G. M. Yeric, A. F. Tasch, and S. K. Banerjee, “A universal MOSFET mobility degradation model for circuit simulation,” IEEE Trans. Computer-Aided Design, vol. 9, no. 10, pp. 1123–1126, Oct. 1990.CrossRef G. M. Yeric, A. F. Tasch, and S. K. Banerjee, “A universal MOSFET mobility degradation model for circuit simulation,” IEEE Trans. Computer-Aided Design, vol. 9, no. 10, pp. 1123–1126, Oct. 1990.CrossRef
11.
go back to reference Y. M. Agostinelli, G. M. Yeric, and A. F. Tacsh, “Universal MOSFET hold mobility degradation models for circuit simulation,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no.3, pp. 439–445, Mar. 1993.CrossRef Y. M. Agostinelli, G. M. Yeric, and A. F. Tacsh, “Universal MOSFET hold mobility degradation models for circuit simulation,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no.3, pp. 439–445, Mar. 1993.CrossRef
12.
go back to reference H. Ohta, et al., “High performance 30 nm gate bulk CMOS for 45 nm node with Σ-shaped SiGe-SD,” IEDM Tech. Dig., pp. 6–10, 2005. H. Ohta, et al., “High performance 30 nm gate bulk CMOS for 45 nm node with Σ-shaped SiGe-SD,” IEDM Tech. Dig., pp. 6–10, 2005.
13.
go back to reference K. Goto, et al., “High performance 25 nm gate CMOSFETs for 65 nm node high speed MPUs,” IEDM Tech. Dig., pp. 623–626, 2003. K. Goto, et al., “High performance 25 nm gate CMOSFETs for 65 nm node high speed MPUs,” IEDM Tech. Dig., pp. 623–626, 2003.
14.
go back to reference Z. Luo, et al., “High performance and low power transistors integrated in 65 nm bulk CMOS technology,” in IEDM Tech. Dig., 2004, pp. 661–664. Z. Luo, et al., “High performance and low power transistors integrated in 65 nm bulk CMOS technology,” in IEDM Tech. Dig., 2004, pp. 661–664.
15.
go back to reference C. C. Wu, et al., “A 90-nm CMOS device technology with high-speed, general-purpose, and low-leakage transistors for system on chip applications,” IEDM Tech. Dig., pp. 65–68, 2002. C. C. Wu, et al., “A 90-nm CMOS device technology with high-speed, general-purpose, and low-leakage transistors for system on chip applications,” IEDM Tech. Dig., pp. 65–68, 2002.
16.
go back to reference V. Chan, et al., “High speed 45 nm gate length CMOSFETs integrated into a 90 nm bulk technology incorporating strain engineering,” IEDM Tech. Dig., pp. 77–80, 2003. V. Chan, et al., “High speed 45 nm gate length CMOSFETs integrated into a 90 nm bulk technology incorporating strain engineering,” IEDM Tech. Dig., pp. 77–80, 2003.
17.
go back to reference S.-F. Huang, et al., “High performance 50 nm CMOS devices for microprocessor and embedded processor core applications,” IEDM Tech. Dig., pp. 237–240, 2001. S.-F. Huang, et al., “High performance 50 nm CMOS devices for microprocessor and embedded processor core applications,” IEDM Tech. Dig., pp. 237–240, 2001.
18.
go back to reference M. Mehrotra, et al., “60 nm gate length dual-Vt CMOS for high performance applications,” VLSI Tech. Symp., pp. 124–125, 2002. M. Mehrotra, et al., “60 nm gate length dual-Vt CMOS for high performance applications,” VLSI Tech. Symp., pp. 124–125, 2002.
19.
go back to reference S. Thompson, et al., “An enhanced 130 nm generation logic technology featuring 60 nm transistors optimized for high performance and low power at 0.7-1.4 V,” IEDM Tech. Dig., pp. 257–260, 2001. S. Thompson, et al., “An enhanced 130 nm generation logic technology featuring 60 nm transistors optimized for high performance and low power at 0.7-1.4 V,” IEDM Tech. Dig., pp. 257–260, 2001.
20.
go back to reference S. Tyagi, et al., “A 130 nm generation logic technology featuring 70 nm transistors dual Vt transistors and 6 layers of Cu interconnects,” IEDM Tech. Dig., pp. 567–570, 2000. S. Tyagi, et al., “A 130 nm generation logic technology featuring 70 nm transistors dual Vt transistors and 6 layers of Cu interconnects,” IEDM Tech. Dig., pp. 567–570, 2000.
21.
go back to reference K. K. Young, et al., “A 0.13 μm CMOS technology with 193 nm lithograghy and Cu/low-k for high performance applications,” IEDM Tech. Dig., pp. 563–566, 2000. K. K. Young, et al., “A 0.13 μm CMOS technology with 193 nm lithograghy and Cu/low-k for high performance applications,” IEDM Tech. Dig., pp. 563–566, 2000.
22.
go back to reference M. Hargrove, et al., “High-performance sub-0.08 μm CMOS with dual gate oxide and 9.7 ps inverter delay,” IEDM Tech. Dig., pp. 627–630, 1998. M. Hargrove, et al., “High-performance sub-0.08 μm CMOS with dual gate oxide and 9.7 ps inverter delay,” IEDM Tech. Dig., pp. 627–630, 1998.
23.
go back to reference L. Su, et al., “A high-performance sub-0.25 μm CMOS technology with multiple threshold and copper interconnects,” VLSI Tech. Symp., pp. 18–19, 1998. L. Su, et al., “A high-performance sub-0.25 μm CMOS technology with multiple threshold and copper interconnects,” VLSI Tech. Symp., pp. 18–19, 1998.
24.
go back to reference M. Rodder, et al., “A 1.2V, 0.1 μm gate length CMOS technology: design and process issues,” IEDM Tech. Dig., pp. 623–626, 1998. M. Rodder, et al., “A 1.2V, 0.1 μm gate length CMOS technology: design and process issues,” IEDM Tech. Dig., pp. 623–626, 1998.
25.
go back to reference M. Rodder, et al., “A 0.10 μm gate length CMOS technology with 30Å gate dielectric for 1.0V-1.5V applications,” IEDM Tech. Dig., pp. 223–226, 1997. M. Rodder, et al., “A 0.10 μm gate length CMOS technology with 30Å gate dielectric for 1.0V-1.5V applications,” IEDM Tech. Dig., pp. 223–226, 1997.
26.
go back to reference M. Rodder, et al., “A sub-0.18 μm gate length CMOS technology for high performance (1.5V) and low power (1.0V),” IEDM Tech. Dig., pp. 563–566, 1996. M. Rodder, et al., “A sub-0.18 μm gate length CMOS technology for high performance (1.5V) and low power (1.0V),” IEDM Tech. Dig., pp. 563–566, 1996.
27.
go back to reference M. Bohr, et al., “A high performance 0.25 μm logic technology optimized for 1.8V operation,” IEDM Tech. Dig., pp. 847–850, 1996. M. Bohr, et al., “A high performance 0.25 μm logic technology optimized for 1.8V operation,” IEDM Tech. Dig., pp. 847–850, 1996.
Metadata
Title
Predictive Technology Model of Conventional CMOS Devices
Author
Yu Cao
Copyright Year
2011
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4614-0445-3_2