Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Polymer Bulletin 3/2018

20-05-2017 | Original Paper

Preparation and dielectric properties of PVP-based polymer electrolyte films for solid-state battery application

Authors: S. K. Shahenoor Basha, G. Sunita Sundari, K. Vijay Kumar, M. C. Rao

Published in: Polymer Bulletin | Issue 3/2018

Login to get access
share
SHARE

Abstract

Solid polymer electrolyte has been prepared with the combination of PVP (poly vinyl pyrrolidone) and magnesium sulfate heptahydrate (MgSO4·7H2O) by solution cast technique and subsequently characterized for possible polymer battery application. Structural studies were carried out by XRD technique. DSC analysis revealed that the micro-porous polymer membrane is thermally stable up to 300 °C. The surface morphology of the films was analyzed by SEM. Electrical conductivity was performed using AC impedance analyzing technique in the frequency range from 4 kHz to 5 MHz. Complex impedance spectroscopy revealed that the enhancement in electrical conductivity by salt doping and the conductivity maximum was obtained for 15 wt% of MgSO4·7H2O salt concentration. Optical absorption studies were carried out on to the prepared films in the wavelength range 200–600 nm. Solid-state polymer battery has been fabricated with the configuration of Mg+/(PVP + MgSO4·7H2O)/(I2 + C + electrolyte) and discharge characteristics were studied for a constant load of 100 kΩ. The cell parameters like open-circuit voltage, short circuit current, energy density and power density were calculated.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Tsutsumi H, Suzuki A (2014) Cross-linked poly (oxetane) matrix for polymer electrolyte containing lithium ions. Solid State Ion 262:761–764 CrossRef Tsutsumi H, Suzuki A (2014) Cross-linked poly (oxetane) matrix for polymer electrolyte containing lithium ions. Solid State Ion 262:761–764 CrossRef
2.
go back to reference Wu HY, Chen YH, Saikia D (2013) Synthesis, structure and electrochemical characterization and dynamic properties of double core branched organic–inorganic hybrid electrolytes membranes. J Membr Sci 447:274–286 CrossRef Wu HY, Chen YH, Saikia D (2013) Synthesis, structure and electrochemical characterization and dynamic properties of double core branched organic–inorganic hybrid electrolytes membranes. J Membr Sci 447:274–286 CrossRef
3.
go back to reference Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Gratzel M (1993) Conversion of light to electricity by cis-X 2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390 CrossRef Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Gratzel M (1993) Conversion of light to electricity by cis-X 2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390 CrossRef
4.
go back to reference Bhattacharya B, Lee JY, Geng J, Jung HT, Park JK (2009) Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells. Langmuir 25:3276–3281 CrossRef Bhattacharya B, Lee JY, Geng J, Jung HT, Park JK (2009) Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells. Langmuir 25:3276–3281 CrossRef
5.
go back to reference Zheng T, Zhou Q, Li Q (2014) A new branched copolyether-based polymer electrolyte for lithium batteries. Solid State Ion 259:9–13 CrossRef Zheng T, Zhou Q, Li Q (2014) A new branched copolyether-based polymer electrolyte for lithium batteries. Solid State Ion 259:9–13 CrossRef
6.
go back to reference Nagarale RK, Bhattacharya B, Jadhav NA, Singh PK (2011) Synthesis and electrochemical study of a functional ionic polymer. Macromol Chem Phys 212:1751–1759 CrossRef Nagarale RK, Bhattacharya B, Jadhav NA, Singh PK (2011) Synthesis and electrochemical study of a functional ionic polymer. Macromol Chem Phys 212:1751–1759 CrossRef
7.
go back to reference Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–462 CrossRef Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–462 CrossRef
8.
go back to reference Macdonald JR, Potter D (1987) A flexible procedure for analyzing impedance spectroscopy results: description and illustrations. Solid State Ion 23:61–79 CrossRef Macdonald JR, Potter D (1987) A flexible procedure for analyzing impedance spectroscopy results: description and illustrations. Solid State Ion 23:61–79 CrossRef
9.
go back to reference Kalaignan GP, Kang MS, Kang YS (2006) Effects of compositions on properties of PEO–KI–I 2 salts polymer electrolytes for DSSC. Solid State Ion 177:1091–1097 CrossRef Kalaignan GP, Kang MS, Kang YS (2006) Effects of compositions on properties of PEO–KI–I 2 salts polymer electrolytes for DSSC. Solid State Ion 177:1091–1097 CrossRef
10.
go back to reference Zhou X, Yin Y, Wang Z (2011) Effect of hot pressing on the ionic conductivity of the PEO/LiCF 3SO 3 based electrolyte membranes. Solid State Ion 196:18–24 CrossRef Zhou X, Yin Y, Wang Z (2011) Effect of hot pressing on the ionic conductivity of the PEO/LiCF 3SO 3 based electrolyte membranes. Solid State Ion 196:18–24 CrossRef
11.
go back to reference Keddie JL, Jones RAL, Cory RA (1994) Size-dependent depression of the glass transition temperature in polymer films. Euro Phys Lett 27:59–64 CrossRef Keddie JL, Jones RAL, Cory RA (1994) Size-dependent depression of the glass transition temperature in polymer films. Euro Phys Lett 27:59–64 CrossRef
12.
go back to reference Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2:695–700 CrossRef Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2:695–700 CrossRef
13.
go back to reference Ted M, Pappenfus Wesley A, Henderson Owens BB (2004) Ionic conductivity of a poly (vinylpyridinium)/silver iodide solid polymer electrolyte system. Solid State Ion 171:41–44 CrossRef Ted M, Pappenfus Wesley A, Henderson Owens BB (2004) Ionic conductivity of a poly (vinylpyridinium)/silver iodide solid polymer electrolyte system. Solid State Ion 171:41–44 CrossRef
14.
go back to reference Mann Kent R, William H, Smyrl S, Rao Sreepathi, Subba Rao UV (1994) Preparation and characterization of a new polymer battery using PA+ AgNO 3 electrolyte. J Mater Sci Lett 13:1771–1772 CrossRef Mann Kent R, William H, Smyrl S, Rao Sreepathi, Subba Rao UV (1994) Preparation and characterization of a new polymer battery using PA+ AgNO 3 electrolyte. J Mater Sci Lett 13:1771–1772 CrossRef
15.
go back to reference Abdelrazek EM (2004) Physical properties of MgCl 2-filled PMMA films for optical applications. Phys B 351:83–89 CrossRef Abdelrazek EM (2004) Physical properties of MgCl 2-filled PMMA films for optical applications. Phys B 351:83–89 CrossRef
16.
go back to reference Pandey GP, Agrawal RC, Hashmi SA (2011) Ionic liquid mediated magnesium ion conduction in poly (ethylene oxide) based polymer electrolyte. Electrochim Acta 56:3864–3873 CrossRef Pandey GP, Agrawal RC, Hashmi SA (2011) Ionic liquid mediated magnesium ion conduction in poly (ethylene oxide) based polymer electrolyte. Electrochim Acta 56:3864–3873 CrossRef
17.
go back to reference Chu D, Jiang RJ (1999) Comparative studies of polymer electrolyte membrane fuel cell stack and single cell. J Power Sources 80:226–234 CrossRef Chu D, Jiang RJ (1999) Comparative studies of polymer electrolyte membrane fuel cell stack and single cell. J Power Sources 80:226–234 CrossRef
18.
go back to reference Singh Manjeet, Singh Vivek K, Surana Karan, Bhattacharya B, Singh Pramod K, Rhee HW (2013) New polymer electrolyte for electrochemical application. J Ind Eng Chem 19:819–822 CrossRef Singh Manjeet, Singh Vivek K, Surana Karan, Bhattacharya B, Singh Pramod K, Rhee HW (2013) New polymer electrolyte for electrochemical application. J Ind Eng Chem 19:819–822 CrossRef
19.
go back to reference Tomar Ritu, Sharma Chirag R (2014) Studies on conducting PVP polymer composites for AC conduction. Int J Sci Eng Technol Res 3:3023–3026 Tomar Ritu, Sharma Chirag R (2014) Studies on conducting PVP polymer composites for AC conduction. Int J Sci Eng Technol Res 3:3023–3026
20.
go back to reference Mohamad SA, Yahya R, Ibrahim ZA, Arof AK (2007) Photovoltaic activity in a ZnTe/PEO–chitosan blend electrolyte junction. Ionics 91:1194–1198 Mohamad SA, Yahya R, Ibrahim ZA, Arof AK (2007) Photovoltaic activity in a ZnTe/PEO–chitosan blend electrolyte junction. Ionics 91:1194–1198
21.
go back to reference Agrawal RC, Pandey GP (2008) Experimental investigations on a proton conducting nanocomposite polymer electrolyte. J Phys D Appl Phys 41:055409 CrossRef Agrawal RC, Pandey GP (2008) Experimental investigations on a proton conducting nanocomposite polymer electrolyte. J Phys D Appl Phys 41:055409 CrossRef
22.
go back to reference Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polym 37:1371–1376 CrossRef Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polym 37:1371–1376 CrossRef
23.
go back to reference Morales E, Acosta JL (1997) Thermal and electrical characterization of plasticized polymer electrolytes based on polyethers and polyphosphazene blends. Solid State Ion 96:99–106 CrossRef Morales E, Acosta JL (1997) Thermal and electrical characterization of plasticized polymer electrolytes based on polyethers and polyphosphazene blends. Solid State Ion 96:99–106 CrossRef
24.
go back to reference Cheng Q, Cui Z, Li J (2014) Preparation and performance of polymer electrolyte based on poly (vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery. J Power Sources 266:401–413 CrossRef Cheng Q, Cui Z, Li J (2014) Preparation and performance of polymer electrolyte based on poly (vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery. J Power Sources 266:401–413 CrossRef
25.
go back to reference Reddeppa N, Sharma AK, Rao VVRN (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41 CrossRef Reddeppa N, Sharma AK, Rao VVRN (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41 CrossRef
26.
go back to reference Arof AK, Amirudin S, Yusof SZ (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867 CrossRef Arof AK, Amirudin S, Yusof SZ (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867 CrossRef
27.
go back to reference Williamson MJ, Southall JP, Hubbard HVSA (1998) NMR measurements of ionic mobility in model polymer electrolyte solutions. Electrochim Acta 43:1415–1420 CrossRef Williamson MJ, Southall JP, Hubbard HVSA (1998) NMR measurements of ionic mobility in model polymer electrolyte solutions. Electrochim Acta 43:1415–1420 CrossRef
28.
go back to reference Ramesh S, Arof AK (2001) Structural, thermal and electrochemical characteristics of poly vinyl chloride (PVC) based polymer electrolytes. J Power Sources 99:41–47 CrossRef Ramesh S, Arof AK (2001) Structural, thermal and electrochemical characteristics of poly vinyl chloride (PVC) based polymer electrolytes. J Power Sources 99:41–47 CrossRef
29.
go back to reference Davis PW, Shilliday TS (1960) Some optical properties of cadmium telluride. Phys Rev 118:1020–1022 CrossRef Davis PW, Shilliday TS (1960) Some optical properties of cadmium telluride. Phys Rev 118:1020–1022 CrossRef
30.
go back to reference Thutupalli GKM, Tomlin SG (1976) The optical properties of thin films of cadmium and zinc selenides and tellurides. J Phys D Appl Phys 9:1639–1646 CrossRef Thutupalli GKM, Tomlin SG (1976) The optical properties of thin films of cadmium and zinc selenides and tellurides. J Phys D Appl Phys 9:1639–1646 CrossRef
31.
go back to reference Sk Shahenoor Basha, Sunita Sundari G, Vijaya Kumar K (2016) Studies on electrical properties of potassium acetate complexed with polyvinyl alcohol for electrochemical cell applications. Mater Today Proc 3:11–20 CrossRef Sk Shahenoor Basha, Sunita Sundari G, Vijaya Kumar K (2016) Studies on electrical properties of potassium acetate complexed with polyvinyl alcohol for electrochemical cell applications. Mater Today Proc 3:11–20 CrossRef
32.
go back to reference Venkata Subba Rao C, Ravi M, Raja V, Balaji Bhargav P, Sharma Ashok Kumar, Narasimha Rao VVR (2012) Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym J 21:531–536 CrossRef Venkata Subba Rao C, Ravi M, Raja V, Balaji Bhargav P, Sharma Ashok Kumar, Narasimha Rao VVR (2012) Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym J 21:531–536 CrossRef
33.
go back to reference Sk Shahenoor Basha, Sunita Sundari G, Vijaya Kumar K (2016) Effect of Al 2O 3 on PVP based polymer electrolyte films doped with MgCl 2·6H 2O for solid state battery applications. Int J Chem Tech Res 9:383–391 Sk Shahenoor Basha, Sunita Sundari G, Vijaya Kumar K (2016) Effect of Al 2O 3 on PVP based polymer electrolyte films doped with MgCl 2·6H 2O for solid state battery applications. Int J Chem Tech Res 9:383–391
34.
go back to reference Diilip K, Pradhan RNP, Chowdary B, Samantaray K (2008) Studies of dielectric relaxation and AC, conductivity behavior of plastisized polymer nano composite electrolytes. Int J Electrochem Sci 3:597–608 Diilip K, Pradhan RNP, Chowdary B, Samantaray K (2008) Studies of dielectric relaxation and AC, conductivity behavior of plastisized polymer nano composite electrolytes. Int J Electrochem Sci 3:597–608
35.
go back to reference Mohd Z, Iqbal R (2016) Structural.electrical conductivity and dielectric behavior of Na 2SO 4-LDT Composite solid electrolyte. J Adv Res 7:135–141 CrossRef Mohd Z, Iqbal R (2016) Structural.electrical conductivity and dielectric behavior of Na 2SO 4-LDT Composite solid electrolyte. J Adv Res 7:135–141 CrossRef
36.
go back to reference Kamalesh P (2011) Development of magnisio ferrite doped polymer electrolyte system for battery applications. Int J Mat Sci 1:9–17 Kamalesh P (2011) Development of magnisio ferrite doped polymer electrolyte system for battery applications. Int J Mat Sci 1:9–17
37.
go back to reference Deraman SK, Mohamed NS, Subban RHY (2014) Ionic liquid incorporated PVC based polymer electrolytes: electrical and dielectric properties. Sains Malays 43:877–883 Deraman SK, Mohamed NS, Subban RHY (2014) Ionic liquid incorporated PVC based polymer electrolytes: electrical and dielectric properties. Sains Malays 43:877–883
38.
go back to reference Anji Reddy P, Ranver Kumar K (2011) AC-Impedence and dielectric spectroscopic studies of Mg 2+ ion conducting PVA-PEG blended polymer electrolytes. Bull Mater Sci 34:1063–1067 CrossRef Anji Reddy P, Ranver Kumar K (2011) AC-Impedence and dielectric spectroscopic studies of Mg 2+ ion conducting PVA-PEG blended polymer electrolytes. Bull Mater Sci 34:1063–1067 CrossRef
39.
go back to reference Melagiriyappa E, Veena M, Somasekharappa AG, Shankara Murthy J, Jayanna HS (2014) Dielectric behavior and ac electrical conductivity in samarium substituted Mg–Ni ferrites. Ind J Phys 88:795–801 CrossRef Melagiriyappa E, Veena M, Somasekharappa AG, Shankara Murthy J, Jayanna HS (2014) Dielectric behavior and ac electrical conductivity in samarium substituted Mg–Ni ferrites. Ind J Phys 88:795–801 CrossRef
40.
go back to reference Hema M, Selvasekarapandian S, Arun Kumar D, Sankuntala A, Nithya H (2009) FTIR, XRD and AC impedence spectroscopic study on PVA based polymer electrolyte doped with NH 4X (X = Cl, Br, I). J Non Cryst Solids 355:84–90 CrossRef Hema M, Selvasekarapandian S, Arun Kumar D, Sankuntala A, Nithya H (2009) FTIR, XRD and AC impedence spectroscopic study on PVA based polymer electrolyte doped with NH 4X (X = Cl, Br, I). J Non Cryst Solids 355:84–90 CrossRef
41.
go back to reference Austin Suthanthiraj S, Joice Sheeba D, Joseph Paul B (2009) Impact of ethylene carbonate onion transport characteristics of PVdF–AgCF 3SO 3 polymer electrolyte system. Mater Res Bull 44:1534–1539 CrossRef Austin Suthanthiraj S, Joice Sheeba D, Joseph Paul B (2009) Impact of ethylene carbonate onion transport characteristics of PVdF–AgCF 3SO 3 polymer electrolyte system. Mater Res Bull 44:1534–1539 CrossRef
42.
go back to reference Bhaskaran R, Selavasekarapandiam S, Kuwata N, Kawamura Hattori JT (2006) AC Impedance, DSC and FT-IR investigations on ( x)PVAc–(1 −  x)PVdF blends with LiClO 4. Mater Chem Phys 98:55–61 CrossRef Bhaskaran R, Selavasekarapandiam S, Kuwata N, Kawamura Hattori JT (2006) AC Impedance, DSC and FT-IR investigations on ( x)PVAc–(1 −  x)PVdF blends with LiClO 4. Mater Chem Phys 98:55–61 CrossRef
43.
go back to reference Ramesh S, Pohling O (2010) Effect of ethylene carbonate on the ionic conduction in poly (vinylidenefluoride-hexafluoropropylene) based solid polymer electrolytes. Polym Chem 1:702–707 CrossRef Ramesh S, Pohling O (2010) Effect of ethylene carbonate on the ionic conduction in poly (vinylidenefluoride-hexafluoropropylene) based solid polymer electrolytes. Polym Chem 1:702–707 CrossRef
44.
go back to reference Rajendran S, Babu Ravi Sankar, Siva Kumar P (2008) Investigations on PVC/PAN composite polymer electrolytes. J Membr Sci 315:67–73 CrossRef Rajendran S, Babu Ravi Sankar, Siva Kumar P (2008) Investigations on PVC/PAN composite polymer electrolytes. J Membr Sci 315:67–73 CrossRef
45.
go back to reference Ravinder D, Ramana Reddy AV, Ranga Mohan G (2002) Abnormal dielectric behaviour in polycrystalline zinc substituted manganese ferrites at high frequencies. Mater Lett 52:259–265 CrossRef Ravinder D, Ramana Reddy AV, Ranga Mohan G (2002) Abnormal dielectric behaviour in polycrystalline zinc substituted manganese ferrites at high frequencies. Mater Lett 52:259–265 CrossRef
46.
go back to reference Yang CC (2006) Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO 2–KOH. Mater Sci Eng B 131:256–262 CrossRef Yang CC (2006) Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO 2–KOH. Mater Sci Eng B 131:256–262 CrossRef
47.
go back to reference Chandra A, Agrawal RC, Mahipal YK (2009) Ion transport property studies on PEO–PVP blended solid polymer electrolyte membrane. J Phys D Appl Phys 42:135107 CrossRef Chandra A, Agrawal RC, Mahipal YK (2009) Ion transport property studies on PEO–PVP blended solid polymer electrolyte membrane. J Phys D Appl Phys 42:135107 CrossRef
48.
go back to reference Shukla N, Awalendra K, Thakur Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-west formalism. Int J Electrochem Sci 9:7644–7659 Shukla N, Awalendra K, Thakur Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-west formalism. Int J Electrochem Sci 9:7644–7659
49.
go back to reference Qian X, Gu N, Zhiliang C (2001) Methods to study the ionic conductivity of polymeric electrolytes using a.c impedance spectroscopy. J Solid State Electrochem 6:8–15 CrossRef Qian X, Gu N, Zhiliang C (2001) Methods to study the ionic conductivity of polymeric electrolytes using a.c impedance spectroscopy. J Solid State Electrochem 6:8–15 CrossRef
50.
go back to reference Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211 CrossRef Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211 CrossRef
Metadata
Title
Preparation and dielectric properties of PVP-based polymer electrolyte films for solid-state battery application
Authors
S. K. Shahenoor Basha
G. Sunita Sundari
K. Vijay Kumar
M. C. Rao
Publication date
20-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 3/2018
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-2072-5

Other articles of this Issue 3/2018

Polymer Bulletin 3/2018 Go to the issue

Premium Partners