Skip to main content
Top
Published in: Journal of Iron and Steel Research International 7/2023

15-06-2023 | Original Paper

Preparation of gangue ceramsite by sintering pot test and potential analysis of waste heat recovery from flue gas

Authors: Yi Huang, Xiang-jie Duan, Yu Li, Wei Zhang

Published in: Journal of Iron and Steel Research International | Issue 7/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Preparation of ceramsite from solid waste based on the sintering process is a new technology and had a high efficiency in improving producing capability, decreasing consumption of liquefied petroleum gas (LPG), and recovering waste heat of flue gas. An experiment sintering gangue ceramsite was conducted in a 25 kg scale sintering pot with a 100 cm height. The combustion characteristics, phase transformation, and the release profile of SO2* (SO and/or SO2) and NOx* (N2O, NO, and/or NO2) of gangue ceramsite during the sintering process were studied by X-ray diffraction analysis, X-ray fluorescence spectrometry, thermogravimetry–differential thermogravimetry–differential scanning calorimetry, and measurement of physical properties of ceramsite and gas components of flue gas. The results showed that the gangue ceramsite had excellent properties, and its compressive strength and water absorption were 8.2–9.6 MPa and 8.9%–9.8%, respectively, far exceeding the requirement of standard (GB/T 17431.1–2010). The ignition temperature of gangue ceramsite was 443 °C, and the ignition loss was 14.60 mass% at 1000 °C. Kaolinite and calcite disappeared at 600 and 800 °C, respectively. Albite disappeared and mullite formed at 1000 °C. Two peaks of SO2* emissions emerged in the range of 311–346 mg m−3 near 500 °C of upper layer ceramsite and 420–489 mg m−3 near 1000 °C of lower layer ceramsite, respectively. NOx* emissions peak emerged in the range of 227–258 mg m−3 near 550 °C of the upper layer ceramsite, which was related to the oxidation of sulfide and the combustion of LPG. Gangue is a direct heat source for sintering of ceramsite as well. During sintering process, the heat of flue gas above and below 400 °C accounts for 55.9% and 30.0% of the all-output heat, respectively, and was potentially used for producing waste-heat steam or electricity as by-products and drying raw materials during its own initial sintering process, which can realize combined mass and heat utilization for the gangue and further reduce the cost of sintered gangue ceramsite.
Literature
[1]
go back to reference Z.Q. Hu, Q. Zhu, J.J. Xu, M.Y. Ruan, Environ. Technol. Innov. 25 (2021) 102094.CrossRef Z.Q. Hu, Q. Zhu, J.J. Xu, M.Y. Ruan, Environ. Technol. Innov. 25 (2021) 102094.CrossRef
[2]
go back to reference G.L. Guo, H.Z. Li, J.F. Zha, Process Saf. Environ. Protection 124 (2019) 336–344.CrossRef G.L. Guo, H.Z. Li, J.F. Zha, Process Saf. Environ. Protection 124 (2019) 336–344.CrossRef
[3]
[5]
go back to reference X.Y. Li, Y.J. Qiao, J.H. Shao, C.Y. Bai, H.Q. Li, S. Lu, X.H. Zhang, K. Yang, P. Colombo, Ceram. Int. 48 (2022) 33914–33925.CrossRef X.Y. Li, Y.J. Qiao, J.H. Shao, C.Y. Bai, H.Q. Li, S. Lu, X.H. Zhang, K. Yang, P. Colombo, Ceram. Int. 48 (2022) 33914–33925.CrossRef
[6]
[7]
go back to reference Y. Li, Y.M. Liu, Chin. J. Eng. 43 (2021) 1713–1724. Y. Li, Y.M. Liu, Chin. J. Eng. 43 (2021) 1713–1724.
[8]
[10]
go back to reference N. Zhang, X.M. Liu, H.H. Sun, Metal Mine (2014) No. 3, 171–176. N. Zhang, X.M. Liu, H.H. Sun, Metal Mine (2014) No. 3, 171–176.
[11]
go back to reference X.M. Liu, B.W. Tang, H.F. Yin, M. Emile, Chin. J. Eng. 40 (2018) 438–445. X.M. Liu, B.W. Tang, H.F. Yin, M. Emile, Chin. J. Eng. 40 (2018) 438–445.
[13]
go back to reference X.G. Cao, J.H. Fei, P. Wang, N. Li, L.L. Su, Coal Science and Technology 47 (2019) No. 4, 7–12. X.G. Cao, J.H. Fei, P. Wang, N. Li, L.L. Su, Coal Science and Technology 47 (2019) No. 4, 7–12.
[14]
go back to reference J. Ma, Z.M. Yu, S.H. Shu, Z.H. Zeng, Coal Engineering 47 (2015) No. 10, 70–73. J. Ma, Z.M. Yu, S.H. Shu, Z.H. Zeng, Coal Engineering 47 (2015) No. 10, 70–73.
[15]
go back to reference P. Liu, F. Yan, China Mining Magazine (2008) No. 8, 49–51 P. Liu, F. Yan, China Mining Magazine (2008) No. 8, 49–51
[16]
go back to reference X.Q. Han, M. Liu, J.J. Yan, S. Karellas, J.S. Wang, F. Xiao, Dry. Technol. 38 (2020) 1971–1987.CrossRef X.Q. Han, M. Liu, J.J. Yan, S. Karellas, J.S. Wang, F. Xiao, Dry. Technol. 38 (2020) 1971–1987.CrossRef
[17]
go back to reference X. Zhu, C.A. Wang, C.L. Tang, D.F. Che, Dry. Technol. 35 (2017) 1492–1505.CrossRef X. Zhu, C.A. Wang, C.L. Tang, D.F. Che, Dry. Technol. 35 (2017) 1492–1505.CrossRef
[18]
[19]
go back to reference S.J. Hu, C.B. Man, X.Z. Gao, J.W. Zhang, X.Y. Xu, D.F. Che, Dry. Technol. 31 (2013) 1194–1205.CrossRef S.J. Hu, C.B. Man, X.Z. Gao, J.W. Zhang, X.Y. Xu, D.F. Che, Dry. Technol. 31 (2013) 1194–1205.CrossRef
[20]
go back to reference W.L. Wang, Z.Y. Luo, Z.L. Shi, K.F. Cen, Waste Manage. Res. 24 (2006) 207–214.CrossRef W.L. Wang, Z.Y. Luo, Z.L. Shi, K.F. Cen, Waste Manage. Res. 24 (2006) 207–214.CrossRef
[21]
go back to reference S.L. Gao, B.F. Wang, F.L. Yang, K. Zhang, F.Q. Cheng, Asia-Pacific J. Chem. Eng. 16 (2021) e2713. S.L. Gao, B.F. Wang, F.L. Yang, K. Zhang, F.Q. Cheng, Asia-Pacific J. Chem. Eng. 16 (2021) e2713.
[22]
[23]
go back to reference R.K. Rathnam, L.K. Elliott, T.F. Wall, Y. Liu, B. Moghtaderi, Fuel Process. Technol. 90 (2009) 797–802.CrossRef R.K. Rathnam, L.K. Elliott, T.F. Wall, Y. Liu, B. Moghtaderi, Fuel Process. Technol. 90 (2009) 797–802.CrossRef
[25]
go back to reference Y.Y. Zhang, Y.X. Guo, F.Q. Cheng, K.Z. Yan, Y. Cao, Thermochim. Acta 614 (2015) 137–148.CrossRef Y.Y. Zhang, Y.X. Guo, F.Q. Cheng, K.Z. Yan, Y. Cao, Thermochim. Acta 614 (2015) 137–148.CrossRef
[26]
[27]
go back to reference Y.H. Liu, Study on nitrogen/sulfur occurrence pattern and its change law in coal, Xi’an Jiaotong University, Xi’an, China, 2002. Y.H. Liu, Study on nitrogen/sulfur occurrence pattern and its change law in coal, Xi’an Jiaotong University, Xi’an, China, 2002.
[28]
go back to reference Z.B. Zhao, W. Li, B.Q. Li, CIESC Journal 54 (2003) 100–106. Z.B. Zhao, W. Li, B.Q. Li, CIESC Journal 54 (2003) 100–106.
[29]
[30]
go back to reference J. Ren, C.J. Xie, X. Guo, Z.F. Qin, J.Y. Lin, Z. Li, Energ. Fuel. 28 (2014) 3688–3695.CrossRef J. Ren, C.J. Xie, X. Guo, Z.F. Qin, J.Y. Lin, Z. Li, Energ. Fuel. 28 (2014) 3688–3695.CrossRef
[31]
go back to reference Y.P. Zhao, H.Q. Hu, L.J. Jin, X.F. He, B. Wu, Fuel Process. Technol. 92 (2011) 780–786.CrossRef Y.P. Zhao, H.Q. Hu, L.J. Jin, X.F. He, B. Wu, Fuel Process. Technol. 92 (2011) 780–786.CrossRef
[32]
go back to reference Q. Wang, H.G. Wang, B.Z. Sun, J.R. Bai, X.H. Guan, Fuel 88 (2009) 1520–1529.CrossRef Q. Wang, H.G. Wang, B.Z. Sun, J.R. Bai, X.H. Guan, Fuel 88 (2009) 1520–1529.CrossRef
[33]
go back to reference G. Sun, H.S. Liu, Coal Processing and Comprehensive Utilization (2012) No. 3, 53–56. G. Sun, H.S. Liu, Coal Processing and Comprehensive Utilization (2012) No. 3, 53–56.
[34]
go back to reference Y.J. Lü, Coal 21 (2012) No. 1, 72–74. Y.J. Lü, Coal 21 (2012) No. 1, 72–74.
[35]
go back to reference C.L. Huo, Y.B. He, Z.H. Meng, Shanxi Coking Coal Science & Technology 35 (2011) No. 1, 47–49+52. C.L. Huo, Y.B. He, Z.H. Meng, Shanxi Coking Coal Science & Technology 35 (2011) No. 1, 47–49+52.
[36]
go back to reference X.H. Yang, B. Huang, J.C. Shu, H.X. Xiong, S. Wen, X.Y. Dong, Yunnan Chemical Technology 38 (2011) No. 2, 37–40. X.H. Yang, B. Huang, J.C. Shu, H.X. Xiong, S. Wen, X.Y. Dong, Yunnan Chemical Technology 38 (2011) No. 2, 37–40.
[37]
[38]
go back to reference B.H. Xu, Q.F. Liu, B. Ai, S.L. Ding, R.L. Frost, J. Therm. Anal. Calorim. 131 (2018) 1413–1422.CrossRef B.H. Xu, Q.F. Liu, B. Ai, S.L. Ding, R.L. Frost, J. Therm. Anal. Calorim. 131 (2018) 1413–1422.CrossRef
[39]
go back to reference G. Habert, N. Choupay, G. Escadeillas, D. Guillaume, J.M. Montel, Appl. Clay Sci. 43 (2009) 322–330.CrossRef G. Habert, N. Choupay, G. Escadeillas, D. Guillaume, J.M. Montel, Appl. Clay Sci. 43 (2009) 322–330.CrossRef
[40]
go back to reference W.X. Li, B.F. Wang, J. Ren, K. Zhang, F.L. Yang, F.Q. Cheng, Journal of Fuel Chemistry and Technology 45 (2017) 1200–1208. W.X. Li, B.F. Wang, J. Ren, K. Zhang, F.L. Yang, F.Q. Cheng, Journal of Fuel Chemistry and Technology 45 (2017) 1200–1208.
[41]
go back to reference B.R. Fu, H.L. Lin, Q.S. Duan, Z. Li, Marine Electric & Electronic Engineering 32 (2012) No. S1, 38–41. B.R. Fu, H.L. Lin, Q.S. Duan, Z. Li, Marine Electric & Electronic Engineering 32 (2012) No. S1, 38–41.
Metadata
Title
Preparation of gangue ceramsite by sintering pot test and potential analysis of waste heat recovery from flue gas
Authors
Yi Huang
Xiang-jie Duan
Yu Li
Wei Zhang
Publication date
15-06-2023
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 7/2023
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-00993-7

Other articles of this Issue 7/2023

Journal of Iron and Steel Research International 7/2023 Go to the issue

Premium Partners