Skip to main content
Erschienen in: Journal of Iron and Steel Research International 7/2023

15.06.2023 | Original Paper

Preparation of gangue ceramsite by sintering pot test and potential analysis of waste heat recovery from flue gas

verfasst von: Yi Huang, Xiang-jie Duan, Yu Li, Wei Zhang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 7/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Preparation of ceramsite from solid waste based on the sintering process is a new technology and had a high efficiency in improving producing capability, decreasing consumption of liquefied petroleum gas (LPG), and recovering waste heat of flue gas. An experiment sintering gangue ceramsite was conducted in a 25 kg scale sintering pot with a 100 cm height. The combustion characteristics, phase transformation, and the release profile of SO2* (SO and/or SO2) and NOx* (N2O, NO, and/or NO2) of gangue ceramsite during the sintering process were studied by X-ray diffraction analysis, X-ray fluorescence spectrometry, thermogravimetry–differential thermogravimetry–differential scanning calorimetry, and measurement of physical properties of ceramsite and gas components of flue gas. The results showed that the gangue ceramsite had excellent properties, and its compressive strength and water absorption were 8.2–9.6 MPa and 8.9%–9.8%, respectively, far exceeding the requirement of standard (GB/T 17431.1–2010). The ignition temperature of gangue ceramsite was 443 °C, and the ignition loss was 14.60 mass% at 1000 °C. Kaolinite and calcite disappeared at 600 and 800 °C, respectively. Albite disappeared and mullite formed at 1000 °C. Two peaks of SO2* emissions emerged in the range of 311–346 mg m−3 near 500 °C of upper layer ceramsite and 420–489 mg m−3 near 1000 °C of lower layer ceramsite, respectively. NOx* emissions peak emerged in the range of 227–258 mg m−3 near 550 °C of the upper layer ceramsite, which was related to the oxidation of sulfide and the combustion of LPG. Gangue is a direct heat source for sintering of ceramsite as well. During sintering process, the heat of flue gas above and below 400 °C accounts for 55.9% and 30.0% of the all-output heat, respectively, and was potentially used for producing waste-heat steam or electricity as by-products and drying raw materials during its own initial sintering process, which can realize combined mass and heat utilization for the gangue and further reduce the cost of sintered gangue ceramsite.
Literatur
[1]
Zurück zum Zitat Z.Q. Hu, Q. Zhu, J.J. Xu, M.Y. Ruan, Environ. Technol. Innov. 25 (2021) 102094.CrossRef Z.Q. Hu, Q. Zhu, J.J. Xu, M.Y. Ruan, Environ. Technol. Innov. 25 (2021) 102094.CrossRef
[2]
Zurück zum Zitat G.L. Guo, H.Z. Li, J.F. Zha, Process Saf. Environ. Protection 124 (2019) 336–344.CrossRef G.L. Guo, H.Z. Li, J.F. Zha, Process Saf. Environ. Protection 124 (2019) 336–344.CrossRef
[3]
[5]
Zurück zum Zitat X.Y. Li, Y.J. Qiao, J.H. Shao, C.Y. Bai, H.Q. Li, S. Lu, X.H. Zhang, K. Yang, P. Colombo, Ceram. Int. 48 (2022) 33914–33925.CrossRef X.Y. Li, Y.J. Qiao, J.H. Shao, C.Y. Bai, H.Q. Li, S. Lu, X.H. Zhang, K. Yang, P. Colombo, Ceram. Int. 48 (2022) 33914–33925.CrossRef
[6]
Zurück zum Zitat Y.F. Li, S.H. Liu, X.M. Guan, Constr. Build. Mater. 301 (2021) 124114.CrossRef Y.F. Li, S.H. Liu, X.M. Guan, Constr. Build. Mater. 301 (2021) 124114.CrossRef
[7]
Zurück zum Zitat Y. Li, Y.M. Liu, Chin. J. Eng. 43 (2021) 1713–1724. Y. Li, Y.M. Liu, Chin. J. Eng. 43 (2021) 1713–1724.
[8]
[10]
Zurück zum Zitat N. Zhang, X.M. Liu, H.H. Sun, Metal Mine (2014) No. 3, 171–176. N. Zhang, X.M. Liu, H.H. Sun, Metal Mine (2014) No. 3, 171–176.
[11]
Zurück zum Zitat X.M. Liu, B.W. Tang, H.F. Yin, M. Emile, Chin. J. Eng. 40 (2018) 438–445. X.M. Liu, B.W. Tang, H.F. Yin, M. Emile, Chin. J. Eng. 40 (2018) 438–445.
[12]
[13]
Zurück zum Zitat X.G. Cao, J.H. Fei, P. Wang, N. Li, L.L. Su, Coal Science and Technology 47 (2019) No. 4, 7–12. X.G. Cao, J.H. Fei, P. Wang, N. Li, L.L. Su, Coal Science and Technology 47 (2019) No. 4, 7–12.
[14]
Zurück zum Zitat J. Ma, Z.M. Yu, S.H. Shu, Z.H. Zeng, Coal Engineering 47 (2015) No. 10, 70–73. J. Ma, Z.M. Yu, S.H. Shu, Z.H. Zeng, Coal Engineering 47 (2015) No. 10, 70–73.
[15]
Zurück zum Zitat P. Liu, F. Yan, China Mining Magazine (2008) No. 8, 49–51 P. Liu, F. Yan, China Mining Magazine (2008) No. 8, 49–51
[16]
Zurück zum Zitat X.Q. Han, M. Liu, J.J. Yan, S. Karellas, J.S. Wang, F. Xiao, Dry. Technol. 38 (2020) 1971–1987.CrossRef X.Q. Han, M. Liu, J.J. Yan, S. Karellas, J.S. Wang, F. Xiao, Dry. Technol. 38 (2020) 1971–1987.CrossRef
[17]
Zurück zum Zitat X. Zhu, C.A. Wang, C.L. Tang, D.F. Che, Dry. Technol. 35 (2017) 1492–1505.CrossRef X. Zhu, C.A. Wang, C.L. Tang, D.F. Che, Dry. Technol. 35 (2017) 1492–1505.CrossRef
[18]
Zurück zum Zitat X. Zhu, C.A. Wang, L.M. Wang, D.F. Che, Dry. Technol. 37 (2019) 26–37.CrossRef X. Zhu, C.A. Wang, L.M. Wang, D.F. Che, Dry. Technol. 37 (2019) 26–37.CrossRef
[19]
Zurück zum Zitat S.J. Hu, C.B. Man, X.Z. Gao, J.W. Zhang, X.Y. Xu, D.F. Che, Dry. Technol. 31 (2013) 1194–1205.CrossRef S.J. Hu, C.B. Man, X.Z. Gao, J.W. Zhang, X.Y. Xu, D.F. Che, Dry. Technol. 31 (2013) 1194–1205.CrossRef
[20]
Zurück zum Zitat W.L. Wang, Z.Y. Luo, Z.L. Shi, K.F. Cen, Waste Manage. Res. 24 (2006) 207–214.CrossRef W.L. Wang, Z.Y. Luo, Z.L. Shi, K.F. Cen, Waste Manage. Res. 24 (2006) 207–214.CrossRef
[21]
Zurück zum Zitat S.L. Gao, B.F. Wang, F.L. Yang, K. Zhang, F.Q. Cheng, Asia-Pacific J. Chem. Eng. 16 (2021) e2713. S.L. Gao, B.F. Wang, F.L. Yang, K. Zhang, F.Q. Cheng, Asia-Pacific J. Chem. Eng. 16 (2021) e2713.
[22]
Zurück zum Zitat F. Meng, J. Yu, A. Tahmasebi, Y. Han, Energy Fuels 27 (2013) 2923–2932.CrossRef F. Meng, J. Yu, A. Tahmasebi, Y. Han, Energy Fuels 27 (2013) 2923–2932.CrossRef
[23]
Zurück zum Zitat R.K. Rathnam, L.K. Elliott, T.F. Wall, Y. Liu, B. Moghtaderi, Fuel Process. Technol. 90 (2009) 797–802.CrossRef R.K. Rathnam, L.K. Elliott, T.F. Wall, Y. Liu, B. Moghtaderi, Fuel Process. Technol. 90 (2009) 797–802.CrossRef
[24]
[25]
Zurück zum Zitat Y.Y. Zhang, Y.X. Guo, F.Q. Cheng, K.Z. Yan, Y. Cao, Thermochim. Acta 614 (2015) 137–148.CrossRef Y.Y. Zhang, Y.X. Guo, F.Q. Cheng, K.Z. Yan, Y. Cao, Thermochim. Acta 614 (2015) 137–148.CrossRef
[26]
Zurück zum Zitat L.H. Liu, Q.F. Liu, S. Zhang, Y.K. Li, L.T. Yang, Fuel 324 (2022) 124803.CrossRef L.H. Liu, Q.F. Liu, S. Zhang, Y.K. Li, L.T. Yang, Fuel 324 (2022) 124803.CrossRef
[27]
Zurück zum Zitat Y.H. Liu, Study on nitrogen/sulfur occurrence pattern and its change law in coal, Xi’an Jiaotong University, Xi’an, China, 2002. Y.H. Liu, Study on nitrogen/sulfur occurrence pattern and its change law in coal, Xi’an Jiaotong University, Xi’an, China, 2002.
[28]
Zurück zum Zitat Z.B. Zhao, W. Li, B.Q. Li, CIESC Journal 54 (2003) 100–106. Z.B. Zhao, W. Li, B.Q. Li, CIESC Journal 54 (2003) 100–106.
[29]
[30]
Zurück zum Zitat J. Ren, C.J. Xie, X. Guo, Z.F. Qin, J.Y. Lin, Z. Li, Energ. Fuel. 28 (2014) 3688–3695.CrossRef J. Ren, C.J. Xie, X. Guo, Z.F. Qin, J.Y. Lin, Z. Li, Energ. Fuel. 28 (2014) 3688–3695.CrossRef
[31]
Zurück zum Zitat Y.P. Zhao, H.Q. Hu, L.J. Jin, X.F. He, B. Wu, Fuel Process. Technol. 92 (2011) 780–786.CrossRef Y.P. Zhao, H.Q. Hu, L.J. Jin, X.F. He, B. Wu, Fuel Process. Technol. 92 (2011) 780–786.CrossRef
[32]
Zurück zum Zitat Q. Wang, H.G. Wang, B.Z. Sun, J.R. Bai, X.H. Guan, Fuel 88 (2009) 1520–1529.CrossRef Q. Wang, H.G. Wang, B.Z. Sun, J.R. Bai, X.H. Guan, Fuel 88 (2009) 1520–1529.CrossRef
[33]
Zurück zum Zitat G. Sun, H.S. Liu, Coal Processing and Comprehensive Utilization (2012) No. 3, 53–56. G. Sun, H.S. Liu, Coal Processing and Comprehensive Utilization (2012) No. 3, 53–56.
[34]
Zurück zum Zitat Y.J. Lü, Coal 21 (2012) No. 1, 72–74. Y.J. Lü, Coal 21 (2012) No. 1, 72–74.
[35]
Zurück zum Zitat C.L. Huo, Y.B. He, Z.H. Meng, Shanxi Coking Coal Science & Technology 35 (2011) No. 1, 47–49+52. C.L. Huo, Y.B. He, Z.H. Meng, Shanxi Coking Coal Science & Technology 35 (2011) No. 1, 47–49+52.
[36]
Zurück zum Zitat X.H. Yang, B. Huang, J.C. Shu, H.X. Xiong, S. Wen, X.Y. Dong, Yunnan Chemical Technology 38 (2011) No. 2, 37–40. X.H. Yang, B. Huang, J.C. Shu, H.X. Xiong, S. Wen, X.Y. Dong, Yunnan Chemical Technology 38 (2011) No. 2, 37–40.
[37]
[38]
Zurück zum Zitat B.H. Xu, Q.F. Liu, B. Ai, S.L. Ding, R.L. Frost, J. Therm. Anal. Calorim. 131 (2018) 1413–1422.CrossRef B.H. Xu, Q.F. Liu, B. Ai, S.L. Ding, R.L. Frost, J. Therm. Anal. Calorim. 131 (2018) 1413–1422.CrossRef
[39]
Zurück zum Zitat G. Habert, N. Choupay, G. Escadeillas, D. Guillaume, J.M. Montel, Appl. Clay Sci. 43 (2009) 322–330.CrossRef G. Habert, N. Choupay, G. Escadeillas, D. Guillaume, J.M. Montel, Appl. Clay Sci. 43 (2009) 322–330.CrossRef
[40]
Zurück zum Zitat W.X. Li, B.F. Wang, J. Ren, K. Zhang, F.L. Yang, F.Q. Cheng, Journal of Fuel Chemistry and Technology 45 (2017) 1200–1208. W.X. Li, B.F. Wang, J. Ren, K. Zhang, F.L. Yang, F.Q. Cheng, Journal of Fuel Chemistry and Technology 45 (2017) 1200–1208.
[41]
Zurück zum Zitat B.R. Fu, H.L. Lin, Q.S. Duan, Z. Li, Marine Electric & Electronic Engineering 32 (2012) No. S1, 38–41. B.R. Fu, H.L. Lin, Q.S. Duan, Z. Li, Marine Electric & Electronic Engineering 32 (2012) No. S1, 38–41.
Metadaten
Titel
Preparation of gangue ceramsite by sintering pot test and potential analysis of waste heat recovery from flue gas
verfasst von
Yi Huang
Xiang-jie Duan
Yu Li
Wei Zhang
Publikationsdatum
15.06.2023
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 7/2023
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-00993-7

Weitere Artikel der Ausgabe 7/2023

Journal of Iron and Steel Research International 7/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.