Skip to main content
Top

2018 | OriginalPaper | Chapter

5. Preparations and Characterizations of Functional Liquid Metal Materials

Authors : Jing Liu, Liting Yi

Published in: Liquid Metal Biomaterials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter summarizes the fabrication methods and characterizations of the functional liquid metal biomaterials. The future outlooks, including challenges, routes and related efforts, were illustrated and interpreted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang Q, Yu Y, Liu J (2017) Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mat 20:1700781CrossRef Wang Q, Yu Y, Liu J (2017) Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mat 20:1700781CrossRef
2.
go back to reference Moskalyk RR (2003) Gallium: the backbone of the electronics industry. Miner Eng 16(10):921–929CrossRef Moskalyk RR (2003) Gallium: the backbone of the electronics industry. Miner Eng 16(10):921–929CrossRef
3.
go back to reference Cheng J, Steckl AJ (2001) Mg–Ga liquid metal ion source for implantation doping of GaN. J Vac Sci Technol, B 19(6):2551–2554CrossRef Cheng J, Steckl AJ (2001) Mg–Ga liquid metal ion source for implantation doping of GaN. J Vac Sci Technol, B 19(6):2551–2554CrossRef
4.
go back to reference FeltonL E, RaederC H, Knorr DB (1993) The properties of tin-bismuth alloy solders. JOM 45(7):28–32CrossRef FeltonL E, RaederC H, Knorr DB (1993) The properties of tin-bismuth alloy solders. JOM 45(7):28–32CrossRef
5.
go back to reference Ge H, Li H, Mei S et al (2013) Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area. Renew Sustain Energy Rev 21(5):331–346CrossRef Ge H, Li H, Mei S et al (2013) Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area. Renew Sustain Energy Rev 21(5):331–346CrossRef
6.
go back to reference Koirala RP, Singh BP, Jha IS, Adhikari D (2015) Viscosity of liquid Na–K alloy. Bibechana 12:135–144 Koirala RP, Singh BP, Jha IS, Adhikari D (2015) Viscosity of liquid Na–K alloy. Bibechana 12:135–144
7.
go back to reference Berghout A, Knider F, Hugel J et al (2007) Partial resistivity analysis of the NaK, NaRb and NaCs liquid alloys. J Non-Cryst Solids 353(32):3226–3230CrossRef Berghout A, Knider F, Hugel J et al (2007) Partial resistivity analysis of the NaK, NaRb and NaCs liquid alloys. J Non-Cryst Solids 353(32):3226–3230CrossRef
8.
go back to reference Gao Y, Liu J (2012) Gallium-based thermal interface material with high compliance and wettability. Appl Phys A 107(3):701–708CrossRef Gao Y, Liu J (2012) Gallium-based thermal interface material with high compliance and wettability. Appl Phys A 107(3):701–708CrossRef
9.
go back to reference Zhang W, Ou JZ, Tang S, Sivan V, Yao DD, Latham K, Khoshmanesh K, Mitchell A, Omullane AP, Kalantarzadeh K (2014) Liquid metal/metal oxide frameworks. Adv Func Mat 24(24):3799–3807CrossRef Zhang W, Ou JZ, Tang S, Sivan V, Yao DD, Latham K, Khoshmanesh K, Mitchell A, Omullane AP, Kalantarzadeh K (2014) Liquid metal/metal oxide frameworks. Adv Func Mat 24(24):3799–3807CrossRef
10.
go back to reference Zhang W, Naidu BS, Ou JZ, Omullane AP, Chrimes AF, Carey BJ, Wang Y, Tang S, Sivan V, Mitchell A, Bhargava SK, Kalantarzadeh K (2015) Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis. ACS Appl Mater Interf 7(3):1943–1950CrossRef Zhang W, Naidu BS, Ou JZ, Omullane AP, Chrimes AF, Carey BJ, Wang Y, Tang S, Sivan V, Mitchell A, Bhargava SK, Kalantarzadeh K (2015) Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis. ACS Appl Mater Interf 7(3):1943–1950CrossRef
11.
go back to reference Syed N, Zavabeti A, Mohiuddin M, Zhang B, Wang Y, Datta RS et al (2017) Sonication-assisted synthesis of gallium oxide suspensions featuring trap state absorption: test of photochemistry. Adv Funct Mater 27:1702295CrossRef Syed N, Zavabeti A, Mohiuddin M, Zhang B, Wang Y, Datta RS et al (2017) Sonication-assisted synthesis of gallium oxide suspensions featuring trap state absorption: test of photochemistry. Adv Funct Mater 27:1702295CrossRef
12.
go back to reference Thlelen J, Dickey MD, Ward TA (2012) study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab Chip 12(20):3961–3967CrossRef Thlelen J, Dickey MD, Ward TA (2012) study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab Chip 12(20):3961–3967CrossRef
13.
go back to reference Hutter T, Bauer WAC, Elliott SR, Huck WTS (2012) Formation of spherical and non-spherical eutectic gallium-indium liquid-metal microdroplets in microfluidic channels at room temperature. Adv Funct Mater 22(12):2624–2631CrossRef Hutter T, Bauer WAC, Elliott SR, Huck WTS (2012) Formation of spherical and non-spherical eutectic gallium-indium liquid-metal microdroplets in microfluidic channels at room temperature. Adv Funct Mater 22(12):2624–2631CrossRef
14.
go back to reference Utada AS, Fernandez-Nieves A, Stone AHA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99(9):094502CrossRef Utada AS, Fernandez-Nieves A, Stone AHA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99(9):094502CrossRef
15.
go back to reference Utada AS, Fernandez-Nieves A, Gordillo JM, Weitz DA (2008) Absolute instability of a liquid jet in a coflowing stream. Phys Rev Lett 100(1):014502CrossRef Utada AS, Fernandez-Nieves A, Gordillo JM, Weitz DA (2008) Absolute instability of a liquid jet in a coflowing stream. Phys Rev Lett 100(1):014502CrossRef
16.
go back to reference Yu Y, Wang Q, Yi L, Liu Y (2014) Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Adv Eng Mater 16(2):255–262CrossRef Yu Y, Wang Q, Yi L, Liu Y (2014) Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Adv Eng Mater 16(2):255–262CrossRef
17.
go back to reference Fang W, He Z, Liu J et al (2014) Electro-hydrodynamic shooting phenomenon of liquid metal stream. Appl Phys Lett 105(13):134104CrossRef Fang W, He Z, Liu J et al (2014) Electro-hydrodynamic shooting phenomenon of liquid metal stream. Appl Phys Lett 105(13):134104CrossRef
18.
go back to reference Yu Y, Wang Q, Wang XL, Wu YH, Liu J (2016) Liquid metal soft electrode triggered discharge plasma in aqueous solution. RSC Adv 6(115):11477CrossRef Yu Y, Wang Q, Wang XL, Wu YH, Liu J (2016) Liquid metal soft electrode triggered discharge plasma in aqueous solution. RSC Adv 6(115):11477CrossRef
19.
go back to reference Zhang W, Srichan N, Chrimes AF, Taylor M, Berean KJ, Ou JZ et al (2016) Sonication synthesis of micro-sized silver nanoparticle/oleic acid liquid marbles: a novel SERS sensing platform. Sens Actuators B Chemical 223:52–58CrossRef Zhang W, Srichan N, Chrimes AF, Taylor M, Berean KJ, Ou JZ et al (2016) Sonication synthesis of micro-sized silver nanoparticle/oleic acid liquid marbles: a novel SERS sensing platform. Sens Actuators B Chemical 223:52–58CrossRef
20.
go back to reference Ren L, Zhuang J, Casillas G, Feng H, Liu Y, Xu X et al (2016) Nanodroplets for stretchable superconducting circuits. Adv Func Mater 26:8111CrossRef Ren L, Zhuang J, Casillas G, Feng H, Liu Y, Xu X et al (2016) Nanodroplets for stretchable superconducting circuits. Adv Func Mater 26:8111CrossRef
21.
go back to reference Lu Y, Hu Q, Lin Y et al (2015) Transformable liquid-metal nanomedicine. Nat Commun 32(6):10066CrossRef Lu Y, Hu Q, Lin Y et al (2015) Transformable liquid-metal nanomedicine. Nat Commun 32(6):10066CrossRef
22.
go back to reference Yamaguchi A, Mashima Y, Iyoda T (2015) Reversible size control of liquid metal nanoparticles under ultrasonication. Angew Chem 54(43):12809–12813CrossRef Yamaguchi A, Mashima Y, Iyoda T (2015) Reversible size control of liquid metal nanoparticles under ultrasonication. Angew Chem 54(43):12809–12813CrossRef
23.
go back to reference Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interf Sci 16(4):266–271CrossRef Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interf Sci 16(4):266–271CrossRef
24.
go back to reference Sivan V, Tang S, Omullane AP et al (2013) Liquid metal marbles. Adv Func Mater 23(2):144–152CrossRef Sivan V, Tang S, Omullane AP et al (2013) Liquid metal marbles. Adv Func Mater 23(2):144–152CrossRef
25.
go back to reference Chen Y, Liu Z, Zhu D, Wang SH, Liang S, Yang J et al (2017) Liquid metal droplets with high elasticity, mobility and mechanical robustness. Mater Horiz 4:591CrossRef Chen Y, Liu Z, Zhu D, Wang SH, Liang S, Yang J et al (2017) Liquid metal droplets with high elasticity, mobility and mechanical robustness. Mater Horiz 4:591CrossRef
26.
go back to reference Tang S, Sivan V, Khoshmanesh K et al (2013) Electrochemically induced actuation of liquid metal marbles. Nanoscale 5(13):5949–5957CrossRef Tang S, Sivan V, Khoshmanesh K et al (2013) Electrochemically induced actuation of liquid metal marbles. Nanoscale 5(13):5949–5957CrossRef
27.
go back to reference Tang X, Tang S, Sivan V et al (2013) Photochemically induced motion of liquid metal marbles. Appl Phys Lett 103(17):174104-1–174104-4CrossRef Tang X, Tang S, Sivan V et al (2013) Photochemically induced motion of liquid metal marbles. Appl Phys Lett 103(17):174104-1–174104-4CrossRef
28.
go back to reference Zhao Y, Fang J, Wang H et al (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22(6):707–710CrossRef Zhao Y, Fang J, Wang H et al (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22(6):707–710CrossRef
29.
go back to reference Kim D, Lee J (2015) Magnetic-field-induced liquid metal droplet manipulation. J Korean Phys Soc 66(2):282–286CrossRef Kim D, Lee J (2015) Magnetic-field-induced liquid metal droplet manipulation. J Korean Phys Soc 66(2):282–286CrossRef
30.
go back to reference Jeon J, Lee J, Chung SK et al (2016) Magnetic liquid metal marble: characterization of lyophobicity and magnetic manipulation for switching applications. IEEE/ASME J Microelectromechanical Syst 25(6):1050–1057CrossRef Jeon J, Lee J, Chung SK et al (2016) Magnetic liquid metal marble: characterization of lyophobicity and magnetic manipulation for switching applications. IEEE/ASME J Microelectromechanical Syst 25(6):1050–1057CrossRef
31.
go back to reference Zhang J, Guo R, Liu J et al (2016) Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B 4(32):5349–5357CrossRef Zhang J, Guo R, Liu J et al (2016) Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J Mater Chem B 4(32):5349–5357CrossRef
32.
go back to reference Hoshyargar F, Crawford J, Mullane AP (2017) Galvanic replacement of the liquid metal galinstan. J Am Chem Soc 139:1464–1471CrossRef Hoshyargar F, Crawford J, Mullane AP (2017) Galvanic replacement of the liquid metal galinstan. J Am Chem Soc 139:1464–1471CrossRef
33.
go back to reference Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E (2017) Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun 8:15432CrossRef Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E (2017) Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun 8:15432CrossRef
34.
go back to reference Ma K, Liu J (2007) Nano liquid-metal fluid as ultimate coolant. Phys Lett A 361(3):252–256CrossRef Ma K, Liu J (2007) Nano liquid-metal fluid as ultimate coolant. Phys Lett A 361(3):252–256CrossRef
35.
go back to reference Zhang Q, Liu J (2013) Nano liquid metal as an emerging functional material in energy management, conversion and storage. Nano Energy 2:863–872CrossRef Zhang Q, Liu J (2013) Nano liquid metal as an emerging functional material in energy management, conversion and storage. Nano Energy 2:863–872CrossRef
36.
go back to reference Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 1–17 Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 1–17
37.
go back to reference Xiong M, Gao Y, Liu J et al (2014) Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy. J Magn Magn Mater 354:279–283CrossRef Xiong M, Gao Y, Liu J et al (2014) Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy. J Magn Magn Mater 354:279–283CrossRef
38.
go back to reference Dodbiba G, Ono K, Park HS, Matsuo S, Fujita T (2011) FeNbVB alloy particles suspended in liquid gallium: investigating the magnetic properties of the MR suspension. Int J Mod Phys B 25(7):329–337CrossRef Dodbiba G, Ono K, Park HS, Matsuo S, Fujita T (2011) FeNbVB alloy particles suspended in liquid gallium: investigating the magnetic properties of the MR suspension. Int J Mod Phys B 25(7):329–337CrossRef
39.
go back to reference Ito R, Dodbiba G, Fujita T (2012) MR fluid of liquid gallium dispersing magnetic particles. Int J Mod Phys B 19:1430–1436CrossRef Ito R, Dodbiba G, Fujita T (2012) MR fluid of liquid gallium dispersing magnetic particles. Int J Mod Phys B 19:1430–1436CrossRef
40.
go back to reference Tang JB, Zhao X, Li J, Zhou Y, Liu J (2017) Liquid metal phagocytosis: Intermetallic wetting induced particle internalization. Adv Sci 4(5):1700024CrossRef Tang JB, Zhao X, Li J, Zhou Y, Liu J (2017) Liquid metal phagocytosis: Intermetallic wetting induced particle internalization. Adv Sci 4(5):1700024CrossRef
41.
go back to reference Mei SF, Gao YX, Deng ZS, Liu J (2014) Thermally conductive and highly electrically resistive grease through homogeneously dispersing liquid metal droplets inside methyl silicone oil. J Electron Packag 136:011009CrossRef Mei SF, Gao YX, Deng ZS, Liu J (2014) Thermally conductive and highly electrically resistive grease through homogeneously dispersing liquid metal droplets inside methyl silicone oil. J Electron Packag 136:011009CrossRef
42.
go back to reference Lin Y, Ladd C, Wang S, Martin A, Genzer J, Khan SA, Dickey MD (2016) Drawing liquid metal wires at room temperature. Extreme Mech Lett 7:55–63CrossRef Lin Y, Ladd C, Wang S, Martin A, Genzer J, Khan SA, Dickey MD (2016) Drawing liquid metal wires at room temperature. Extreme Mech Lett 7:55–63CrossRef
43.
go back to reference Li P, Liu J (2011) Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal. ASME J Electron Packag 133(4):041009CrossRef Li P, Liu J (2011) Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal. ASME J Electron Packag 133(4):041009CrossRef
44.
go back to reference Alchagirov BB, Mozgovoi AG (2005) The surface tension of molten gallium at high temperatures. High Temp 43(5):791–792CrossRef Alchagirov BB, Mozgovoi AG (2005) The surface tension of molten gallium at high temperatures. High Temp 43(5):791–792CrossRef
45.
go back to reference Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu JT, Wakeham WA (2012) Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon. J Phys Chem Ref Data 41(3):285 Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu JT, Wakeham WA (2012) Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon. J Phys Chem Ref Data 41(3):285
46.
go back to reference Larsen RJ, Dickey MD, Whitesides GM, Weitz DA (2009) Viscoelastic properties of oxide-coated liquid metals. J Rheol 53(6):1305–1326CrossRef Larsen RJ, Dickey MD, Whitesides GM, Weitz DA (2009) Viscoelastic properties of oxide-coated liquid metals. J Rheol 53(6):1305–1326CrossRef
47.
go back to reference Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM (2008) Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Func Mater 18(7):1097–1104CrossRef Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM (2008) Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Func Mater 18(7):1097–1104CrossRef
48.
go back to reference Liu T, Sen P, Kim C (2012) Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. IEEE/ASME J Microelectromech Syst 21(2):443–450CrossRef Liu T, Sen P, Kim C (2012) Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. IEEE/ASME J Microelectromech Syst 21(2):443–450CrossRef
49.
go back to reference Surmann P, Zeyat H (2005) Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem 383(6):1009–1013CrossRef Surmann P, Zeyat H (2005) Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem 383(6):1009–1013CrossRef
50.
go back to reference Morley NB, Burris J, Cadwallader LC, Nornberg MD (2008) GaInSn usage in the research laboratory. Rev Sci Instrum 79(5):112–192CrossRef Morley NB, Burris J, Cadwallader LC, Nornberg MD (2008) GaInSn usage in the research laboratory. Rev Sci Instrum 79(5):112–192CrossRef
51.
go back to reference Cao L, Park H, Dodbiba G et al (2011) Keeping gallium metal to liquid state under the freezing point by using silica nanoparticles. Appl Phys Lett 99(14):143120-1–143120-3CrossRef Cao L, Park H, Dodbiba G et al (2011) Keeping gallium metal to liquid state under the freezing point by using silica nanoparticles. Appl Phys Lett 99(14):143120-1–143120-3CrossRef
52.
go back to reference GaoY X, Li H, Liu J (2012) Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 7:e45485CrossRef GaoY X, Li H, Liu J (2012) Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 7:e45485CrossRef
53.
go back to reference Qiao L, Su F, Bi H, Girault HH, Liu B (2011) Ga2O3 photocatalyzed on-line tagging of cysteine to facilitate peptide mass fingerprinting. Proteomics 11(17):3501–3509CrossRef Qiao L, Su F, Bi H, Girault HH, Liu B (2011) Ga2O3 photocatalyzed on-line tagging of cysteine to facilitate peptide mass fingerprinting. Proteomics 11(17):3501–3509CrossRef
54.
go back to reference Suo G, Jiang S, Zhang J et al (2014) Synthetic strategies and applications of GaN nanowires. Adv Condens Matter Phys 2014:1–11CrossRef Suo G, Jiang S, Zhang J et al (2014) Synthetic strategies and applications of GaN nanowires. Adv Condens Matter Phys 2014:1–11CrossRef
55.
go back to reference Carey BJ, Ou JZ, Clark RM, Berean KJ, Zavabeti A, Chesman ASR et al (2017) Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat Commun 8:14482CrossRef Carey BJ, Ou JZ, Clark RM, Berean KJ, Zavabeti A, Chesman ASR et al (2017) Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat Commun 8:14482CrossRef
56.
go back to reference Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B: Chem 99(2):592–600CrossRef Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sens Actuators B: Chem 99(2):592–600CrossRef
57.
go back to reference Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149(1):174–180CrossRef Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149(1):174–180CrossRef
58.
go back to reference Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167CrossRef Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167CrossRef
59.
go back to reference Tsai TH, Kuo LS, Chen PH, Lee D, Yang C (2010) Applications of ferro-nanofluid on a micro-transformer. Sensors 10(9):8161–8172CrossRef Tsai TH, Kuo LS, Chen PH, Lee D, Yang C (2010) Applications of ferro-nanofluid on a micro-transformer. Sensors 10(9):8161–8172CrossRef
60.
go back to reference Zheng Y, He ZZ, Yang J, Liu J (2014) Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep 4:4588CrossRef Zheng Y, He ZZ, Yang J, Liu J (2014) Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep 4:4588CrossRef
61.
go back to reference Deng Y, Liu J (2009) Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device. Appl Phys A 95:907–915CrossRef Deng Y, Liu J (2009) Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device. Appl Phys A 95:907–915CrossRef
62.
go back to reference Surmann P, Zeyat H (2005) Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem 383:1009–1013CrossRef Surmann P, Zeyat H (2005) Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem 383:1009–1013CrossRef
63.
go back to reference Lu J, Yi L, Wang L, Tan S, Gui H, Liu J (2016) Liquid metal corrosion sculpture to fabricate quickly complex patterns on aluminum. Sci China Technol Sci 60:65–70CrossRef Lu J, Yi L, Wang L, Tan S, Gui H, Liu J (2016) Liquid metal corrosion sculpture to fabricate quickly complex patterns on aluminum. Sci China Technol Sci 60:65–70CrossRef
64.
go back to reference Tang W, Jiang T, Fan FR et al (2015) Liquidmetal electrode for high performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv Func Mater 25(24):3718–3725CrossRef Tang W, Jiang T, Fan FR et al (2015) Liquidmetal electrode for high performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv Func Mater 25(24):3718–3725CrossRef
65.
go back to reference Takahashi R, Matsuo M, Ono M, Harii K, Chudo H, Okayasu S, Ieda JI, Takahashi S, Maekawa S, Saitoh E (2016) Spin hydrodynamic generation. Nat Phys 12(1):52CrossRef Takahashi R, Matsuo M, Ono M, Harii K, Chudo H, Okayasu S, Ieda JI, Takahashi S, Maekawa S, Saitoh E (2016) Spin hydrodynamic generation. Nat Phys 12(1):52CrossRef
66.
go back to reference Wang H, Leung DY, Leung MK, Ni M (2009) A review on hydrogen production using aluminum and aluminum alloys. Renew Sustain Energy Rev 13(4):845–853CrossRef Wang H, Leung DY, Leung MK, Ni M (2009) A review on hydrogen production using aluminum and aluminum alloys. Renew Sustain Energy Rev 13(4):845–853CrossRef
67.
go back to reference Yang W, Zhang TY, Liu JZ, Wang XH, Zhou JH, Cen KF (2015) Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature. Energy 93(1):451–457CrossRef Yang W, Zhang TY, Liu JZ, Wang XH, Zhou JH, Cen KF (2015) Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature. Energy 93(1):451–457CrossRef
68.
go back to reference Ho C, Huang C (2016) Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water. Int J Hydrogen Energy 41(6):3741–3747CrossRef Ho C, Huang C (2016) Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water. Int J Hydrogen Energy 41(6):3741–3747CrossRef
69.
go back to reference Wu D, Ouyang L, Wu C, Wang H, Liu J, Sun L, Zhu M (2015) Phase transition and hydrogen storage properties of Mg–Ga alloy. J Alloy Compd 642:180–184CrossRef Wu D, Ouyang L, Wu C, Wang H, Liu J, Sun L, Zhu M (2015) Phase transition and hydrogen storage properties of Mg–Ga alloy. J Alloy Compd 642:180–184CrossRef
70.
go back to reference Ilyukhina AV, Kravchenko OV, Bulychev BM, Shkolnikov EI (2010) Mechanochemical activation of aluminum with gallams for hydrogen evolution from water. Int J Hydrogen Energy 35(5):1905–1910CrossRef Ilyukhina AV, Kravchenko OV, Bulychev BM, Shkolnikov EI (2010) Mechanochemical activation of aluminum with gallams for hydrogen evolution from water. Int J Hydrogen Energy 35(5):1905–1910CrossRef
71.
go back to reference Baniamerian MJ, Moradi SE (2011) Al–Ga doped nanostructured carbon as a novel material for hydrogen production in water. J Alloy Compd 509(21):6307–6310CrossRef Baniamerian MJ, Moradi SE (2011) Al–Ga doped nanostructured carbon as a novel material for hydrogen production in water. J Alloy Compd 509(21):6307–6310CrossRef
72.
go back to reference Kravchenko OV, Semenenko KN, Bulychev BM, Kalmykov KB (2005) Activation of aluminum metal and its reaction with water. J Alloy Compd 397(1):58–62CrossRef Kravchenko OV, Semenenko KN, Bulychev BM, Kalmykov KB (2005) Activation of aluminum metal and its reaction with water. J Alloy Compd 397(1):58–62CrossRef
73.
go back to reference Wang W, Zhao X, Chen DM, Yang K (2012) Insight into the reactivity of AL–Ga–In–Sn alloy with water. Int J Hydrogen Energy 37(3):2187–2194CrossRef Wang W, Zhao X, Chen DM, Yang K (2012) Insight into the reactivity of AL–Ga–In–Sn alloy with water. Int J Hydrogen Energy 37(3):2187–2194CrossRef
74.
go back to reference Parmuzina AV, Kravchenko OV (2008) Activation of aluminium metal to evolve hydrogen from water. Int J Hydrogen Energy 33(12):3073–3076CrossRef Parmuzina AV, Kravchenko OV (2008) Activation of aluminium metal to evolve hydrogen from water. Int J Hydrogen Energy 33(12):3073–3076CrossRef
75.
go back to reference Fan MQ, Xu F, Sun LX (2007) Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water. Int J Hydrogen Energy 32(14):2809–2815CrossRef Fan MQ, Xu F, Sun LX (2007) Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water. Int J Hydrogen Energy 32(14):2809–2815CrossRef
76.
go back to reference Yuan B, Tan S, Liu J (2016) Dynamic hydrogen generation phenomenon of aluminum fed liquid phase Ga–In alloy inside NaOH electrolyte. Int J Hydrogen Energy 41(3):1453–1459CrossRef Yuan B, Tan S, Liu J (2016) Dynamic hydrogen generation phenomenon of aluminum fed liquid phase Ga–In alloy inside NaOH electrolyte. Int J Hydrogen Energy 41(3):1453–1459CrossRef
77.
go back to reference Taccardi N, Grabau M, Debuschewitz J, Distaso M, Brandl M, Hock R, Maier F, Papp C, Erhard J, Neiss C, Peukert W, Görling A, Steinrück HP, Wasserscheid P (2017) Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat Chem 9(9):862CrossRef Taccardi N, Grabau M, Debuschewitz J, Distaso M, Brandl M, Hock R, Maier F, Papp C, Erhard J, Neiss C, Peukert W, Görling A, Steinrück HP, Wasserscheid P (2017) Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat Chem 9(9):862CrossRef
78.
go back to reference Simpkins BS, Ericson LM, Stroud RM et al (2006) Gallium-based catalysts for growth of GaN nanowires. J Cryst Growth 290(1):115–120CrossRef Simpkins BS, Ericson LM, Stroud RM et al (2006) Gallium-based catalysts for growth of GaN nanowires. J Cryst Growth 290(1):115–120CrossRef
79.
go back to reference Hoshyargar F, Khan H, Kalantar-zadeh K, Omullane AP (2015) Generation of catalytically active materials from a liquid metal precursor. Chem Commun 51:14026–14029CrossRef Hoshyargar F, Khan H, Kalantar-zadeh K, Omullane AP (2015) Generation of catalytically active materials from a liquid metal precursor. Chem Commun 51:14026–14029CrossRef
80.
go back to reference Kalantar-zadeh K, Ou JZ, Daeneke T, Mitchell A, Sasaki T, Fuhrer MS (2016) Two dimensional and layered transition metal oxides. Appl Mater Today 5:73–89CrossRef Kalantar-zadeh K, Ou JZ, Daeneke T, Mitchell A, Sasaki T, Fuhrer MS (2016) Two dimensional and layered transition metal oxides. Appl Mater Today 5:73–89CrossRef
81.
go back to reference Shafiei M, Hoshyargar F, Motta N, O’Mullane AP (2017) Utilizing p-type native oxide on liquid metal microdroplets for low temperature gas sensing. Mater Des 122:288–295CrossRef Shafiei M, Hoshyargar F, Motta N, O’Mullane AP (2017) Utilizing p-type native oxide on liquid metal microdroplets for low temperature gas sensing. Mater Des 122:288–295CrossRef
82.
go back to reference Zavabeti A, OuJ Z, Carey BJ, Syed N, Orrell-Trigg R, Mayes ELH et al (2017) A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358:332–335CrossRef Zavabeti A, OuJ Z, Carey BJ, Syed N, Orrell-Trigg R, Mayes ELH et al (2017) A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358:332–335CrossRef
83.
84.
go back to reference Wang J, Zeng M, Tan L, Dai B, Deng Y, Rümmeli M et al (2013) High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Sci Rep 3(3):2670CrossRef Wang J, Zeng M, Tan L, Dai B, Deng Y, Rümmeli M et al (2013) High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Sci Rep 3(3):2670CrossRef
85.
go back to reference Liu X, Chu PK, Ding C et al (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R-reports 47(3):49–121CrossRef Liu X, Chu PK, Ding C et al (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R-reports 47(3):49–121CrossRef
87.
go back to reference Donahue CJ, Exline JA (2014) Anodizing and coloring aluminum alloys. J Chem Educ 91(5):711–715CrossRef Donahue CJ, Exline JA (2014) Anodizing and coloring aluminum alloys. J Chem Educ 91(5):711–715CrossRef
88.
go back to reference Diamanti MV, Curto BD, Masconale V et al (2012) Anodic coloring of titanium and its alloy for jewels production. Color Research and Application 37(5):384–390CrossRef Diamanti MV, Curto BD, Masconale V et al (2012) Anodic coloring of titanium and its alloy for jewels production. Color Research and Application 37(5):384–390CrossRef
89.
go back to reference John S, Perumal AS, Shenoi BA et al (1984) Chemical colouring of aluminium. Surf Technol 22(1):15–20CrossRef John S, Perumal AS, Shenoi BA et al (1984) Chemical colouring of aluminium. Surf Technol 22(1):15–20CrossRef
90.
go back to reference Wahab HA, Noordin MY, Izman S et al (2013) Quantitative analysis of electroplated nickel coating on hard metal. Sci World J 2013:631936CrossRef Wahab HA, Noordin MY, Izman S et al (2013) Quantitative analysis of electroplated nickel coating on hard metal. Sci World J 2013:631936CrossRef
93.
go back to reference Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062CrossRef Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062CrossRef
94.
go back to reference Sajeev J (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489CrossRef Sajeev J (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489CrossRef
Metadata
Title
Preparations and Characterizations of Functional Liquid Metal Materials
Authors
Jing Liu
Liting Yi
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5607-9_5

Premium Partners