Skip to main content
Top
Published in: Metal Science and Heat Treatment 5-6/2018

06-10-2018

Primary Recrystallization Texture in FCC-Metal with Low Packing Defect Energy

Authors: M. A. Zorina, M. L. Lobanov, E. A. Makarova, G. M. Rusakov

Published in: Metal Science and Heat Treatment | Issue 5-6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The method of orientation microscopy (EBSD) is used to study the special features of recrystallization texture in drawn copper wire. It is shown that the strict crystallographic relationships between deformation and recrystallization orientations are consequences of the dominant role in structural transformations of special misorientations, i.e. special boundaries. Mechanisms of the appearance and “growth” of annealing twins are proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yu. N. Loginov and V. V. Kotov, “Texture development in copper semiproducts,” in: Features of Treatment and Use of Heavy Nonferrous Metal Objects [in Russian], UrO RAN, Ekaterinburg (2006). Yu. N. Loginov and V. V. Kotov, “Texture development in copper semiproducts,” in: Features of Treatment and Use of Heavy Nonferrous Metal Objects [in Russian], UrO RAN, Ekaterinburg (2006).
2.
go back to reference A. S. Belyaevskikh, M. L. Lobanov, G. M. Rusakov, and A. A. Redikul’tsev, “Improving the production of superthin anisotropic electrical steel,” Steel Transl., 45(12), 982 – 986 (2015).CrossRef A. S. Belyaevskikh, M. L. Lobanov, G. M. Rusakov, and A. A. Redikul’tsev, “Improving the production of superthin anisotropic electrical steel,” Steel Transl., 45(12), 982 – 986 (2015).CrossRef
3.
go back to reference I. Yu. Pyshmintsev, A. O. Struin, A. M. Gervasyev, et al., “Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment,” Metallurgist, 1 – 8 (2016). I. Yu. Pyshmintsev, A. O. Struin, A. M. Gervasyev, et al., “Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment,” Metallurgist, 1 – 8 (2016).
4.
go back to reference G. Gottstein, Physical Foundation of Materials Science, Springer-Verlag, Berlin Heidelberg (2004).CrossRef G. Gottstein, Physical Foundation of Materials Science, Springer-Verlag, Berlin Heidelberg (2004).CrossRef
5.
go back to reference Ya. D. Vusnyakov, A. A. Babareko, S. A. Vladimirov, and I. V. Égiz, Theory of Texture Formation in Metals and Alloys [in Russian], Nauka, Moscow (1979). Ya. D. Vusnyakov, A. A. Babareko, S. A. Vladimirov, and I. V. Égiz, Theory of Texture Formation in Metals and Alloys [in Russian], Nauka, Moscow (1979).
6.
go back to reference S. L. Demakov, Y. N. Loginov, A. G. Illarionov, et al., “Effect of annealing temperature on the texture of copper wire,” Phys. Met. Metallogr., 113(7), 681 – 686 (2012).CrossRef S. L. Demakov, Y. N. Loginov, A. G. Illarionov, et al., “Effect of annealing temperature on the texture of copper wire,” Phys. Met. Metallogr., 113(7), 681 – 686 (2012).CrossRef
7.
go back to reference A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena: Second Edition, Elsevier Ltd (2004). A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena: Second Edition, Elsevier Ltd (2004).
8.
go back to reference M. Hölscher, D. Raabe, and K. Lücke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,” Acta Metall. Mater., 42(3), 879 – 886 (1994).CrossRef M. Hölscher, D. Raabe, and K. Lücke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,” Acta Metall. Mater., 42(3), 879 – 886 (1994).CrossRef
9.
go back to reference A. G. Uritskii, A. A. Redikul’tsev, S. V. Smirnov, et al. “Structure and texture formation over the width of ferritic-steel strip in hot rolling,” Steel Transl., 44(10), 723 – 725 (2015).CrossRef A. G. Uritskii, A. A. Redikul’tsev, S. V. Smirnov, et al. “Structure and texture formation over the width of ferritic-steel strip in hot rolling,” Steel Transl., 44(10), 723 – 725 (2015).CrossRef
10.
go back to reference M. L. Lobanov, S. V. Danilov, V. I. Pastukhov, et al., “The crystallographic relationship of molybdenum textures after hot rolling and recrystallization,” Mater. Des., 109, 251 – 255 (2016).CrossRef M. L. Lobanov, S. V. Danilov, V. I. Pastukhov, et al., “The crystallographic relationship of molybdenum textures after hot rolling and recrystallization,” Mater. Des., 109, 251 – 255 (2016).CrossRef
11.
go back to reference G. Wassermann and J. Grewen, Texturen Metallischer Werkstoffe, Springer, Berlin (1962).CrossRef G. Wassermann and J. Grewen, Texturen Metallischer Werkstoffe, Springer, Berlin (1962).CrossRef
12.
go back to reference T. Maitland and S. Sitzman, Electron Backscatter Diffraction (EBSD) Technique and Materials Characterization Examples, Springer, Berlin (2007). T. Maitland and S. Sitzman, Electron Backscatter Diffraction (EBSD) Technique and Materials Characterization Examples, Springer, Berlin (2007).
13.
go back to reference M. L. Lobanov, A. A. Redikul’tsev, G. M. Rusakov, and S. V. Danilov, “Interrelation between the orientations of deformation and recrystallization in hot rolling of anisotropic electrical steel,” Met. Sci. Heat Treat., 57(7 – 8), 492 – 497 (2015).CrossRef M. L. Lobanov, A. A. Redikul’tsev, G. M. Rusakov, and S. V. Danilov, “Interrelation between the orientations of deformation and recrystallization in hot rolling of anisotropic electrical steel,” Met. Sci. Heat Treat., 57(7 – 8), 492 – 497 (2015).CrossRef
14.
go back to reference A. A. Redikul’tsev, L. M. Lobanov, G. M. Rusakov, and L. V. Lobanova, “Secondary recrystallization in Fe – 3 % Si alloy with (110)[001] single-component texture,” Phys. Met. Metallogr., 114(1), 33 – 40 (2013).CrossRef A. A. Redikul’tsev, L. M. Lobanov, G. M. Rusakov, and L. V. Lobanova, “Secondary recrystallization in Fe – 3 % Si alloy with (110)[001] single-component texture,” Phys. Met. Metallogr., 114(1), 33 – 40 (2013).CrossRef
15.
go back to reference P. Haasen, “How are new orientations generated during primary recrystallization?” Metall. Trans. A., 24(5), 1001 – 1015 (1993).CrossRef P. Haasen, “How are new orientations generated during primary recrystallization?” Metall. Trans. A., 24(5), 1001 – 1015 (1993).CrossRef
16.
go back to reference Y. V. Khlebnikova, D. P. Rodionov, I. V. Gervas’eva, et al., “Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates,” Tech. Phys., 60(3), 389 – 399 (2015).CrossRef Y. V. Khlebnikova, D. P. Rodionov, I. V. Gervas’eva, et al., “Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates,” Tech. Phys., 60(3), 389 – 399 (2015).CrossRef
17.
go back to reference T. Baudin, A. L. Etter, and R. Penelle, “Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements,” Mater. Charact., 58(10), 947 – 953 (2007).CrossRef T. Baudin, A. L. Etter, and R. Penelle, “Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements,” Mater. Charact., 58(10), 947 – 953 (2007).CrossRef
18.
go back to reference F. Brisset, A.-L. Helbert, and T. Baudin, “In situ electron backscatter diffraction investigation of recrystallization in a copper wire,” Microsc. Microanal., 19(4), 969 – 977 (2013).CrossRef F. Brisset, A.-L. Helbert, and T. Baudin, “In situ electron backscatter diffraction investigation of recrystallization in a copper wire,” Microsc. Microanal., 19(4), 969 – 977 (2013).CrossRef
19.
go back to reference J.-H. Cho, A. D. Rollet, J.-S. Cho, et al., “Investigation of recrystallization and grain growth of copper and gold bonding wires,” Metall. Mater. Trans. A, 37(10), 3085 – 3097 (2006).CrossRef J.-H. Cho, A. D. Rollet, J.-S. Cho, et al., “Investigation of recrystallization and grain growth of copper and gold bonding wires,” Metall. Mater. Trans. A, 37(10), 3085 – 3097 (2006).CrossRef
20.
go back to reference H. Park and D. N. Lee, “The evolution of annealing textures in 90 Pct drawn copper wire,” Metall. Mater. Trans. Phys. Metall. Mater. Sci., 34A(3), 531 – 541 (2003).CrossRef H. Park and D. N. Lee, “The evolution of annealing textures in 90 Pct drawn copper wire,” Metall. Mater. Trans. Phys. Metall. Mater. Sci., 34A(3), 531 – 541 (2003).CrossRef
21.
go back to reference K. R. Narayanan, I. Sridhar, and S. Subbiah, “Experimental and numerical investigations of the texture evolution in copper wire drawing,” Appl. Phys. Mater. Sci. Proc., 107(2), 485 – 495 (2012).CrossRef K. R. Narayanan, I. Sridhar, and S. Subbiah, “Experimental and numerical investigations of the texture evolution in copper wire drawing,” Appl. Phys. Mater. Sci. Proc., 107(2), 485 – 495 (2012).CrossRef
22.
go back to reference K. Rajan and R. Petkie, “Microtexture and anisotropy in wire drawn copper,” Mater. Sci. Eng. A, 257, 197 (1998).CrossRef K. Rajan and R. Petkie, “Microtexture and anisotropy in wire drawn copper,” Mater. Sci. Eng. A, 257, 197 (1998).CrossRef
23.
go back to reference T. Montesin and J. J. Heizmann, “Evolution of crystallographic texture in thin wires,” J. Appl. Crystallogr., 25(6), 665 – 673 (1992).CrossRef T. Montesin and J. J. Heizmann, “Evolution of crystallographic texture in thin wires,” J. Appl. Crystallogr., 25(6), 665 – 673 (1992).CrossRef
24.
go back to reference D. N. Lee, “Strain energy release maximization model for recrystallization textures,” Met. Mater. Int., 5(5), 401 – 417 (1999).CrossRef D. N. Lee, “Strain energy release maximization model for recrystallization textures,” Met. Mater. Int., 5(5), 401 – 417 (1999).CrossRef
25.
go back to reference S. I. Wright, J. F. Bingert, and L. Zernow, “Microtextural zones in a copper shaped charge particle,” Mater. Sci. Eng. A, 207(2), 224 – 227 (1996).CrossRef S. I. Wright, J. F. Bingert, and L. Zernow, “Microtextural zones in a copper shaped charge particle,” Mater. Sci. Eng. A, 207(2), 224 – 227 (1996).CrossRef
26.
go back to reference R. Penelle and T. Baudin, “Primary recrystallization of invar, Fe – 36% Ni alloy: Origin and development of the cubic texture,” Adv. Eng. Mater., 12(10), 1047 – 1052 (2010).CrossRef R. Penelle and T. Baudin, “Primary recrystallization of invar, Fe – 36% Ni alloy: Origin and development of the cubic texture,” Adv. Eng. Mater., 12(10), 1047 – 1052 (2010).CrossRef
27.
go back to reference V. Randle, “Twinning-related grain boundary engineering,” Acta Mater., 52, 4067 – 4081 (2004).CrossRef V. Randle, “Twinning-related grain boundary engineering,” Acta Mater., 52, 4067 – 4081 (2004).CrossRef
28.
go back to reference D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater., 55(12), 4233 – 4241 (2007).CrossRef D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater., 55(12), 4233 – 4241 (2007).CrossRef
29.
go back to reference N. Souaï, N. Bozzolo, L. Nazé, et al., “About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy,” Scr. Mater., 62(11), 851 – 854 (2010).CrossRef N. Souaï, N. Bozzolo, L. Nazé, et al., “About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy,” Scr. Mater., 62(11), 851 – 854 (2010).CrossRef
30.
go back to reference J. G. Brons and G. B. Thompson, “A comparison of grain boundary evolution during grain growth in fcc metals,” Acta Mater., 61(11), 3936 – 3944 (2013).CrossRef J. G. Brons and G. B. Thompson, “A comparison of grain boundary evolution during grain growth in fcc metals,” Acta Mater., 61(11), 3936 – 3944 (2013).CrossRef
31.
go back to reference O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Metal Properties [in Russian], Metallurgiya, Moscow (1987). O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Metal Properties [in Russian], Metallurgiya, Moscow (1987).
Metadata
Title
Primary Recrystallization Texture in FCC-Metal with Low Packing Defect Energy
Authors
M. A. Zorina
M. L. Lobanov
E. A. Makarova
G. M. Rusakov
Publication date
06-10-2018
Publisher
Springer US
Published in
Metal Science and Heat Treatment / Issue 5-6/2018
Print ISSN: 0026-0673
Electronic ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-018-0280-8

Other articles of this Issue 5-6/2018

Metal Science and Heat Treatment 5-6/2018 Go to the issue

Premium Partners