Skip to main content
Erschienen in: Metal Science and Heat Treatment 5-6/2018

06.10.2018

Primary Recrystallization Texture in FCC-Metal with Low Packing Defect Energy

verfasst von: M. A. Zorina, M. L. Lobanov, E. A. Makarova, G. M. Rusakov

Erschienen in: Metal Science and Heat Treatment | Ausgabe 5-6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The method of orientation microscopy (EBSD) is used to study the special features of recrystallization texture in drawn copper wire. It is shown that the strict crystallographic relationships between deformation and recrystallization orientations are consequences of the dominant role in structural transformations of special misorientations, i.e. special boundaries. Mechanisms of the appearance and “growth” of annealing twins are proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu. N. Loginov and V. V. Kotov, “Texture development in copper semiproducts,” in: Features of Treatment and Use of Heavy Nonferrous Metal Objects [in Russian], UrO RAN, Ekaterinburg (2006). Yu. N. Loginov and V. V. Kotov, “Texture development in copper semiproducts,” in: Features of Treatment and Use of Heavy Nonferrous Metal Objects [in Russian], UrO RAN, Ekaterinburg (2006).
2.
Zurück zum Zitat A. S. Belyaevskikh, M. L. Lobanov, G. M. Rusakov, and A. A. Redikul’tsev, “Improving the production of superthin anisotropic electrical steel,” Steel Transl., 45(12), 982 – 986 (2015).CrossRef A. S. Belyaevskikh, M. L. Lobanov, G. M. Rusakov, and A. A. Redikul’tsev, “Improving the production of superthin anisotropic electrical steel,” Steel Transl., 45(12), 982 – 986 (2015).CrossRef
3.
Zurück zum Zitat I. Yu. Pyshmintsev, A. O. Struin, A. M. Gervasyev, et al., “Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment,” Metallurgist, 1 – 8 (2016). I. Yu. Pyshmintsev, A. O. Struin, A. M. Gervasyev, et al., “Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment,” Metallurgist, 1 – 8 (2016).
4.
Zurück zum Zitat G. Gottstein, Physical Foundation of Materials Science, Springer-Verlag, Berlin Heidelberg (2004).CrossRef G. Gottstein, Physical Foundation of Materials Science, Springer-Verlag, Berlin Heidelberg (2004).CrossRef
5.
Zurück zum Zitat Ya. D. Vusnyakov, A. A. Babareko, S. A. Vladimirov, and I. V. Égiz, Theory of Texture Formation in Metals and Alloys [in Russian], Nauka, Moscow (1979). Ya. D. Vusnyakov, A. A. Babareko, S. A. Vladimirov, and I. V. Égiz, Theory of Texture Formation in Metals and Alloys [in Russian], Nauka, Moscow (1979).
6.
Zurück zum Zitat S. L. Demakov, Y. N. Loginov, A. G. Illarionov, et al., “Effect of annealing temperature on the texture of copper wire,” Phys. Met. Metallogr., 113(7), 681 – 686 (2012).CrossRef S. L. Demakov, Y. N. Loginov, A. G. Illarionov, et al., “Effect of annealing temperature on the texture of copper wire,” Phys. Met. Metallogr., 113(7), 681 – 686 (2012).CrossRef
7.
Zurück zum Zitat A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena: Second Edition, Elsevier Ltd (2004). A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena: Second Edition, Elsevier Ltd (2004).
8.
Zurück zum Zitat M. Hölscher, D. Raabe, and K. Lücke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,” Acta Metall. Mater., 42(3), 879 – 886 (1994).CrossRef M. Hölscher, D. Raabe, and K. Lücke, “Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals,” Acta Metall. Mater., 42(3), 879 – 886 (1994).CrossRef
9.
Zurück zum Zitat A. G. Uritskii, A. A. Redikul’tsev, S. V. Smirnov, et al. “Structure and texture formation over the width of ferritic-steel strip in hot rolling,” Steel Transl., 44(10), 723 – 725 (2015).CrossRef A. G. Uritskii, A. A. Redikul’tsev, S. V. Smirnov, et al. “Structure and texture formation over the width of ferritic-steel strip in hot rolling,” Steel Transl., 44(10), 723 – 725 (2015).CrossRef
10.
Zurück zum Zitat M. L. Lobanov, S. V. Danilov, V. I. Pastukhov, et al., “The crystallographic relationship of molybdenum textures after hot rolling and recrystallization,” Mater. Des., 109, 251 – 255 (2016).CrossRef M. L. Lobanov, S. V. Danilov, V. I. Pastukhov, et al., “The crystallographic relationship of molybdenum textures after hot rolling and recrystallization,” Mater. Des., 109, 251 – 255 (2016).CrossRef
11.
Zurück zum Zitat G. Wassermann and J. Grewen, Texturen Metallischer Werkstoffe, Springer, Berlin (1962).CrossRef G. Wassermann and J. Grewen, Texturen Metallischer Werkstoffe, Springer, Berlin (1962).CrossRef
12.
Zurück zum Zitat T. Maitland and S. Sitzman, Electron Backscatter Diffraction (EBSD) Technique and Materials Characterization Examples, Springer, Berlin (2007). T. Maitland and S. Sitzman, Electron Backscatter Diffraction (EBSD) Technique and Materials Characterization Examples, Springer, Berlin (2007).
13.
Zurück zum Zitat M. L. Lobanov, A. A. Redikul’tsev, G. M. Rusakov, and S. V. Danilov, “Interrelation between the orientations of deformation and recrystallization in hot rolling of anisotropic electrical steel,” Met. Sci. Heat Treat., 57(7 – 8), 492 – 497 (2015).CrossRef M. L. Lobanov, A. A. Redikul’tsev, G. M. Rusakov, and S. V. Danilov, “Interrelation between the orientations of deformation and recrystallization in hot rolling of anisotropic electrical steel,” Met. Sci. Heat Treat., 57(7 – 8), 492 – 497 (2015).CrossRef
14.
Zurück zum Zitat A. A. Redikul’tsev, L. M. Lobanov, G. M. Rusakov, and L. V. Lobanova, “Secondary recrystallization in Fe – 3 % Si alloy with (110)[001] single-component texture,” Phys. Met. Metallogr., 114(1), 33 – 40 (2013).CrossRef A. A. Redikul’tsev, L. M. Lobanov, G. M. Rusakov, and L. V. Lobanova, “Secondary recrystallization in Fe – 3 % Si alloy with (110)[001] single-component texture,” Phys. Met. Metallogr., 114(1), 33 – 40 (2013).CrossRef
15.
Zurück zum Zitat P. Haasen, “How are new orientations generated during primary recrystallization?” Metall. Trans. A., 24(5), 1001 – 1015 (1993).CrossRef P. Haasen, “How are new orientations generated during primary recrystallization?” Metall. Trans. A., 24(5), 1001 – 1015 (1993).CrossRef
16.
Zurück zum Zitat Y. V. Khlebnikova, D. P. Rodionov, I. V. Gervas’eva, et al., “Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates,” Tech. Phys., 60(3), 389 – 399 (2015).CrossRef Y. V. Khlebnikova, D. P. Rodionov, I. V. Gervas’eva, et al., “Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates,” Tech. Phys., 60(3), 389 – 399 (2015).CrossRef
17.
Zurück zum Zitat T. Baudin, A. L. Etter, and R. Penelle, “Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements,” Mater. Charact., 58(10), 947 – 953 (2007).CrossRef T. Baudin, A. L. Etter, and R. Penelle, “Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements,” Mater. Charact., 58(10), 947 – 953 (2007).CrossRef
18.
Zurück zum Zitat F. Brisset, A.-L. Helbert, and T. Baudin, “In situ electron backscatter diffraction investigation of recrystallization in a copper wire,” Microsc. Microanal., 19(4), 969 – 977 (2013).CrossRef F. Brisset, A.-L. Helbert, and T. Baudin, “In situ electron backscatter diffraction investigation of recrystallization in a copper wire,” Microsc. Microanal., 19(4), 969 – 977 (2013).CrossRef
19.
Zurück zum Zitat J.-H. Cho, A. D. Rollet, J.-S. Cho, et al., “Investigation of recrystallization and grain growth of copper and gold bonding wires,” Metall. Mater. Trans. A, 37(10), 3085 – 3097 (2006).CrossRef J.-H. Cho, A. D. Rollet, J.-S. Cho, et al., “Investigation of recrystallization and grain growth of copper and gold bonding wires,” Metall. Mater. Trans. A, 37(10), 3085 – 3097 (2006).CrossRef
20.
Zurück zum Zitat H. Park and D. N. Lee, “The evolution of annealing textures in 90 Pct drawn copper wire,” Metall. Mater. Trans. Phys. Metall. Mater. Sci., 34A(3), 531 – 541 (2003).CrossRef H. Park and D. N. Lee, “The evolution of annealing textures in 90 Pct drawn copper wire,” Metall. Mater. Trans. Phys. Metall. Mater. Sci., 34A(3), 531 – 541 (2003).CrossRef
21.
Zurück zum Zitat K. R. Narayanan, I. Sridhar, and S. Subbiah, “Experimental and numerical investigations of the texture evolution in copper wire drawing,” Appl. Phys. Mater. Sci. Proc., 107(2), 485 – 495 (2012).CrossRef K. R. Narayanan, I. Sridhar, and S. Subbiah, “Experimental and numerical investigations of the texture evolution in copper wire drawing,” Appl. Phys. Mater. Sci. Proc., 107(2), 485 – 495 (2012).CrossRef
22.
Zurück zum Zitat K. Rajan and R. Petkie, “Microtexture and anisotropy in wire drawn copper,” Mater. Sci. Eng. A, 257, 197 (1998).CrossRef K. Rajan and R. Petkie, “Microtexture and anisotropy in wire drawn copper,” Mater. Sci. Eng. A, 257, 197 (1998).CrossRef
23.
Zurück zum Zitat T. Montesin and J. J. Heizmann, “Evolution of crystallographic texture in thin wires,” J. Appl. Crystallogr., 25(6), 665 – 673 (1992).CrossRef T. Montesin and J. J. Heizmann, “Evolution of crystallographic texture in thin wires,” J. Appl. Crystallogr., 25(6), 665 – 673 (1992).CrossRef
24.
Zurück zum Zitat D. N. Lee, “Strain energy release maximization model for recrystallization textures,” Met. Mater. Int., 5(5), 401 – 417 (1999).CrossRef D. N. Lee, “Strain energy release maximization model for recrystallization textures,” Met. Mater. Int., 5(5), 401 – 417 (1999).CrossRef
25.
Zurück zum Zitat S. I. Wright, J. F. Bingert, and L. Zernow, “Microtextural zones in a copper shaped charge particle,” Mater. Sci. Eng. A, 207(2), 224 – 227 (1996).CrossRef S. I. Wright, J. F. Bingert, and L. Zernow, “Microtextural zones in a copper shaped charge particle,” Mater. Sci. Eng. A, 207(2), 224 – 227 (1996).CrossRef
26.
Zurück zum Zitat R. Penelle and T. Baudin, “Primary recrystallization of invar, Fe – 36% Ni alloy: Origin and development of the cubic texture,” Adv. Eng. Mater., 12(10), 1047 – 1052 (2010).CrossRef R. Penelle and T. Baudin, “Primary recrystallization of invar, Fe – 36% Ni alloy: Origin and development of the cubic texture,” Adv. Eng. Mater., 12(10), 1047 – 1052 (2010).CrossRef
27.
Zurück zum Zitat V. Randle, “Twinning-related grain boundary engineering,” Acta Mater., 52, 4067 – 4081 (2004).CrossRef V. Randle, “Twinning-related grain boundary engineering,” Acta Mater., 52, 4067 – 4081 (2004).CrossRef
28.
Zurück zum Zitat D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater., 55(12), 4233 – 4241 (2007).CrossRef D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater., 55(12), 4233 – 4241 (2007).CrossRef
29.
Zurück zum Zitat N. Souaï, N. Bozzolo, L. Nazé, et al., “About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy,” Scr. Mater., 62(11), 851 – 854 (2010).CrossRef N. Souaï, N. Bozzolo, L. Nazé, et al., “About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy,” Scr. Mater., 62(11), 851 – 854 (2010).CrossRef
30.
Zurück zum Zitat J. G. Brons and G. B. Thompson, “A comparison of grain boundary evolution during grain growth in fcc metals,” Acta Mater., 61(11), 3936 – 3944 (2013).CrossRef J. G. Brons and G. B. Thompson, “A comparison of grain boundary evolution during grain growth in fcc metals,” Acta Mater., 61(11), 3936 – 3944 (2013).CrossRef
31.
Zurück zum Zitat O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Metal Properties [in Russian], Metallurgiya, Moscow (1987). O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Metal Properties [in Russian], Metallurgiya, Moscow (1987).
Metadaten
Titel
Primary Recrystallization Texture in FCC-Metal with Low Packing Defect Energy
verfasst von
M. A. Zorina
M. L. Lobanov
E. A. Makarova
G. M. Rusakov
Publikationsdatum
06.10.2018
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 5-6/2018
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-018-0280-8

Weitere Artikel der Ausgabe 5-6/2018

Metal Science and Heat Treatment 5-6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.