Skip to main content
Top
Published in: Metallography, Microstructure, and Analysis 4/2017

23-06-2017 | Technical Article

Processing and Characterization of Graphene and Multi-wall Carbon Nanotube-Reinforced Aluminium Alloy AA2219 Composites Processed by Ball Milling and Vacuum Hot Pressing

Authors: Lava Kumar Pillari, A. K. Shukla, S. V. S. Narayana Murty, V. Umasankar

Published in: Metallography, Microstructure, and Analysis | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aluminium alloy AA2219 reinforced with graphene/MWCNT nanocomposites having near theoretical densities has been successfully fabricated by high-energy ball milling followed by vacuum hot pressing. Effect of varying graphene and MWCNT content was studied on different aspects of processing of the composites. The particle size increases during milling due to cold welding; but the presence of reinforcement restricts and the resultant microstructures exhibited a layered morphology with graphene/MWCNT between particle boundaries. The composite with 0.5 wt.% reinforcement (graphene/MWCNT) content exhibited peak hardness, and further additions led to a decrease in hardness owing to the agglomeration of reinforcement at particle interfaces. The present study reveals that graphene is a better reinforcement compared to MWCNTs in aluminium matrix. This is attributed to the sheet-like morphology of graphene which covers the matrix powder particles more effectively compared to tube-like MWCNTs in providing more matrix–reinforcement contact points leading to better sintering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.R. Bakshi, V. Singh, S. Seal, A. Agarwal, Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf. Coat. Technol. 203, 1544–1554 (2009)CrossRef S.R. Bakshi, V. Singh, S. Seal, A. Agarwal, Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf. Coat. Technol. 203, 1544–1554 (2009)CrossRef
2.
go back to reference A. Dorri Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review. Compos. Part B Eng. 77, 402–420 (2015)CrossRef A. Dorri Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review. Compos. Part B Eng. 77, 402–420 (2015)CrossRef
3.
go back to reference Z.M. Gasem, Fatigue crack growth behavior in powder-metallurgy 6061 aluminium alloy reinforced with submicron Al2O3 particulates. Compos. Part B Eng. 43, 3020–3025 (2012)CrossRef Z.M. Gasem, Fatigue crack growth behavior in powder-metallurgy 6061 aluminium alloy reinforced with submicron Al2O3 particulates. Compos. Part B Eng. 43, 3020–3025 (2012)CrossRef
4.
go back to reference L. Dyachkova, E.E. Feldshtein, On the properties of composites based on sintered bronze with alumina additives. Compos. Part B Eng. 45, 239–247 (2013)CrossRef L. Dyachkova, E.E. Feldshtein, On the properties of composites based on sintered bronze with alumina additives. Compos. Part B Eng. 45, 239–247 (2013)CrossRef
5.
go back to reference M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, X. Wang, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B Eng. 60, 111–118 (2014)CrossRef M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, X. Wang, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B Eng. 60, 111–118 (2014)CrossRef
6.
go back to reference M.O. Bodunrin, K.K. Alaneme, L.H. Chown, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 4, 434–445 (2015)CrossRef M.O. Bodunrin, K.K. Alaneme, L.H. Chown, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 4, 434–445 (2015)CrossRef
7.
go back to reference S.K. Singhal, R. Pasricha, M. Jangra, R. Chahal, S. Teotia, R.B. Mathur, Carbon nanotubes: amino functionalization and its application in the fabrication of Al-matrix composites. Powder Technol. 215–216, 254–263 (2012)CrossRef S.K. Singhal, R. Pasricha, M. Jangra, R. Chahal, S. Teotia, R.B. Mathur, Carbon nanotubes: amino functionalization and its application in the fabrication of Al-matrix composites. Powder Technol. 215–216, 254–263 (2012)CrossRef
8.
go back to reference Z. Gnjidić, D. Božić, M. Mitkov, The influence of SiC particles on the compressive properties of metal matrix composites. Mater. Charact. 47, 129–138 (2001)CrossRef Z. Gnjidić, D. Božić, M. Mitkov, The influence of SiC particles on the compressive properties of metal matrix composites. Mater. Charact. 47, 129–138 (2001)CrossRef
9.
go back to reference V. Umasankar, S. Karthikeyan, M.A. Xavior, The influence of electroless nickel coated SiC on the interface strength and microhardness of aluminium composites. J. Mater. Environ. Sci. 5, 153–158 (2014) V. Umasankar, S. Karthikeyan, M.A. Xavior, The influence of electroless nickel coated SiC on the interface strength and microhardness of aluminium composites. J. Mater. Environ. Sci. 5, 153–158 (2014)
10.
go back to reference H. Hocheng, S.B. Yen, T. Ishihara, B.K. Yen, Fundamental turning characteristics of a tribology-favored graphite/aluminum alloy composite material. Compos. Part A: Appl. Sci. Manuf. 28, 883–890 (1997)CrossRef H. Hocheng, S.B. Yen, T. Ishihara, B.K. Yen, Fundamental turning characteristics of a tribology-favored graphite/aluminum alloy composite material. Compos. Part A: Appl. Sci. Manuf. 28, 883–890 (1997)CrossRef
11.
go back to reference A.R. Kennedy, S.M. Wyatt, Characterising particle–matrix interfacial bonding in particulate Al–TiC MMCs produced by different methods. Compos. Part A: Appl. Sci. Manuf. 32, 555–559 (2001)CrossRef A.R. Kennedy, S.M. Wyatt, Characterising particle–matrix interfacial bonding in particulate Al–TiC MMCs produced by different methods. Compos. Part A: Appl. Sci. Manuf. 32, 555–559 (2001)CrossRef
12.
go back to reference M. Kouzeli, A. Mortensen, Size dependent strengthening in particle reinforced aluminium. Acta Mater. 50, 39–51 (2002)CrossRef M. Kouzeli, A. Mortensen, Size dependent strengthening in particle reinforced aluminium. Acta Mater. 50, 39–51 (2002)CrossRef
13.
go back to reference K. Scida, P.W. Stege, G. Haby, G.A. Messina, C.D. García, Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal. Chim. Acta 691, 6–17 (2011)CrossRef K. Scida, P.W. Stege, G. Haby, G.A. Messina, C.D. García, Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal. Chim. Acta 691, 6–17 (2011)CrossRef
14.
go back to reference B.T. Zhang, X. Zheng, H.F. Li, J.M. Lin, Application of carbon-based nanomaterials in sample preparation: a review. Anal. Chim. Acta 784, 1–17 (2013)CrossRef B.T. Zhang, X. Zheng, H.F. Li, J.M. Lin, Application of carbon-based nanomaterials in sample preparation: a review. Anal. Chim. Acta 784, 1–17 (2013)CrossRef
15.
go back to reference A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
16.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
17.
go back to reference J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66, 594–597 (2012)CrossRef J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66, 594–597 (2012)CrossRef
18.
go back to reference M. Rashad, F. Pan, A. Tang, M. Asif, Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. Mater. Int. 24, 101–108 (2014)CrossRef M. Rashad, F. Pan, A. Tang, M. Asif, Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. Mater. Int. 24, 101–108 (2014)CrossRef
19.
go back to reference C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef
20.
go back to reference A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef
21.
go back to reference K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)CrossRef K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)CrossRef
22.
go back to reference S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef
23.
go back to reference S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
24.
go back to reference M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)CrossRef M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)CrossRef
25.
go back to reference R.S. Ruoff, D. Qian, W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C. R. Phys. 4, 993–1008 (2003)CrossRef R.S. Ruoff, D. Qian, W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C. R. Phys. 4, 993–1008 (2003)CrossRef
26.
go back to reference C.M. Hussain, S. Mitra, Micropreconcentration units based on carbon nanotubes (CNT). Anal. Bioanal. Chem. 399, 75–89 (2011)CrossRef C.M. Hussain, S. Mitra, Micropreconcentration units based on carbon nanotubes (CNT). Anal. Bioanal. Chem. 399, 75–89 (2011)CrossRef
27.
go back to reference D. Chunfeng, Z. Xuexi, W. Dezun, Chemical stability of carbon nanotubes in the 2024 Al matrix. Mater. Lett. 61, 904–907 (2007)CrossRef D. Chunfeng, Z. Xuexi, W. Dezun, Chemical stability of carbon nanotubes in the 2024 Al matrix. Mater. Lett. 61, 904–907 (2007)CrossRef
28.
go back to reference R. Pérez-Bustamante, C.D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S.A. Pérez-García, R. Martínez-Sánchez, Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater. Sci. Eng. A 502, 159–163 (2009)CrossRef R. Pérez-Bustamante, C.D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S.A. Pérez-García, R. Martínez-Sánchez, Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater. Sci. Eng. A 502, 159–163 (2009)CrossRef
29.
go back to reference S.E. Shin, H.J. Choi, J.H. Shin, D.H. Bae, Strengthening behavior of few-layered graphene/aluminum composites. Carbon 82, 143–151 (2015)CrossRef S.E. Shin, H.J. Choi, J.H. Shin, D.H. Bae, Strengthening behavior of few-layered graphene/aluminum composites. Carbon 82, 143–151 (2015)CrossRef
30.
go back to reference R. Pérez-Bustamante, F. Pérez-Bustamante, I. Estrada-Guel, L. Licea-Jiménez, M. Miki-Yoshida, R. Martínez-Sánchez, Effect of milling time and CNT concentration on hardness of CNT/Al 2024 composites produced by mechanical alloying. Mater. Charact. 75, 13–19 (2013)CrossRef R. Pérez-Bustamante, F. Pérez-Bustamante, I. Estrada-Guel, L. Licea-Jiménez, M. Miki-Yoshida, R. Martínez-Sánchez, Effect of milling time and CNT concentration on hardness of CNT/Al 2024 composites produced by mechanical alloying. Mater. Charact. 75, 13–19 (2013)CrossRef
31.
go back to reference Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos. Part A: Appl. Sci. Manuf. 43, 2161–2168 (2012)CrossRef Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos. Part A: Appl. Sci. Manuf. 43, 2161–2168 (2012)CrossRef
32.
go back to reference A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Part A: Appl. Sci. Manuf. 38, 646–650 (2007)CrossRef A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Part A: Appl. Sci. Manuf. 38, 646–650 (2007)CrossRef
33.
go back to reference S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Graphene-aluminum nanocomposites. Mater. Sci. Eng. A 528, 7933–7937 (2011)CrossRef S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Graphene-aluminum nanocomposites. Mater. Sci. Eng. A 528, 7933–7937 (2011)CrossRef
34.
go back to reference J. Liu, U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, D. Brabazon, Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: powder synthesis and prepared composite characteristics. Mater. Des. 94, 87–94 (2016)CrossRef J. Liu, U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, D. Brabazon, Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: powder synthesis and prepared composite characteristics. Mater. Des. 94, 87–94 (2016)CrossRef
35.
go back to reference X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, B. Wang, Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater. Des. 94, 54–60 (2016)CrossRef X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, B. Wang, Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater. Des. 94, 54–60 (2016)CrossRef
36.
go back to reference R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 615, S578–S582 (2014)CrossRef R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 615, S578–S582 (2014)CrossRef
37.
go back to reference S. Nasimul, L. Kumar, Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets. Mater. Sci. Eng. A 667, 16–32 (2016)CrossRef S. Nasimul, L. Kumar, Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets. Mater. Sci. Eng. A 667, 16–32 (2016)CrossRef
38.
go back to reference J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, S.L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng. A 626, 400–405 (2015)CrossRef J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, S.L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng. A 626, 400–405 (2015)CrossRef
39.
go back to reference H. Zhang, C. Xu, W. Xiao, K. Ameyama, C. Ma, Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater. Sci. Eng., A 658, 8–15 (2016)CrossRef H. Zhang, C. Xu, W. Xiao, K. Ameyama, C. Ma, Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater. Sci. Eng., A 658, 8–15 (2016)CrossRef
40.
go back to reference H. Kwon, J. Mondal, K.A. AlOgab, V. Sammelselg, M. Takamichi, A. Kawaski, M. Leparoux, Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J. Alloys Compd. 698, 807–813 (2017)CrossRef H. Kwon, J. Mondal, K.A. AlOgab, V. Sammelselg, M. Takamichi, A. Kawaski, M. Leparoux, Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J. Alloys Compd. 698, 807–813 (2017)CrossRef
41.
go back to reference J.Z. Liao, M.J. Tan, I. Sridhar, Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater. Des. 31, S96–S100 (2010)CrossRef J.Z. Liao, M.J. Tan, I. Sridhar, Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater. Des. 31, S96–S100 (2010)CrossRef
42.
go back to reference R. Pérez-Bustamante, I. Estrada-Guel, W. Antúnez-Flores, M. Miki-Yoshida, P.J. Ferreira, R. Martínez-Sánchez, Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. J. Alloys Compd. 450, 323–326 (2008)CrossRef R. Pérez-Bustamante, I. Estrada-Guel, W. Antúnez-Flores, M. Miki-Yoshida, P.J. Ferreira, R. Martínez-Sánchez, Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. J. Alloys Compd. 450, 323–326 (2008)CrossRef
43.
go back to reference I.Y. Kim, J.H. Lee, G.S. Lee, S.H. Baik, Y.J. Kim, Y.Z. Lee, Friction and wear characteristics of the carbon nanotube-aluminum composites with different manufacturing conditions. Wear 267, 593–598 (2009)CrossRef I.Y. Kim, J.H. Lee, G.S. Lee, S.H. Baik, Y.J. Kim, Y.Z. Lee, Friction and wear characteristics of the carbon nanotube-aluminum composites with different manufacturing conditions. Wear 267, 593–598 (2009)CrossRef
44.
go back to reference K. Morsi, A.M.K. Esawi, S. Lanka, A. Sayed, M. Taher, Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders. Compos. Part A: Appl. Sci. Manuf. 41, 322–326 (2010)CrossRef K. Morsi, A.M.K. Esawi, S. Lanka, A. Sayed, M. Taher, Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders. Compos. Part A: Appl. Sci. Manuf. 41, 322–326 (2010)CrossRef
45.
go back to reference M. Majid, G.H. Majzoobi, G.A. Noozad, A. Reihani, S.Z. Mortazavi, M.S. Gorji, Fabrication and mechanical properties of MWCNTs-reinforced aluminum composites by hot extrusion. Rare Met. 31, 372–378 (2012)CrossRef M. Majid, G.H. Majzoobi, G.A. Noozad, A. Reihani, S.Z. Mortazavi, M.S. Gorji, Fabrication and mechanical properties of MWCNTs-reinforced aluminum composites by hot extrusion. Rare Met. 31, 372–378 (2012)CrossRef
46.
go back to reference C.R. Bradbury, J.K. Gomon, L. Kollo, H. Kwon, M. Leparoux, Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites. J. Alloys Compd. 585, 362–367 (2014)CrossRef C.R. Bradbury, J.K. Gomon, L. Kollo, H. Kwon, M. Leparoux, Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites. J. Alloys Compd. 585, 362–367 (2014)CrossRef
47.
go back to reference T. He, X. He, P. Tang, D. Chu, X. Wang, P. Li, The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes. Mater. Des. 114, 373–382 (2017)CrossRef T. He, X. He, P. Tang, D. Chu, X. Wang, P. Li, The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes. Mater. Des. 114, 373–382 (2017)CrossRef
48.
go back to reference C. Deng, X. Zhang, D. Wang, Q. Lin, A. Li, Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater. Lett. 61, 1725–1728 (2007)CrossRef C. Deng, X. Zhang, D. Wang, Q. Lin, A. Li, Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater. Lett. 61, 1725–1728 (2007)CrossRef
49.
go back to reference N. Saheb, Sintering behavior of CNT reinforced Al6061 and Al2124 nanocomposites. Adv. Mater. Sci. Eng. 2014, 9 (2014)CrossRef N. Saheb, Sintering behavior of CNT reinforced Al6061 and Al2124 nanocomposites. Adv. Mater. Sci. Eng. 2014, 9 (2014)CrossRef
50.
go back to reference L. Wang, H. Choi, J.M. Myoung, W. Lee, Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon 47, 3427–3433 (2009)CrossRef L. Wang, H. Choi, J.M. Myoung, W. Lee, Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon 47, 3427–3433 (2009)CrossRef
51.
go back to reference K. Morsi, A. Esawi, Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)-CNT composite powders. J. Mater. Sci. 42, 4954–4959 (2007)CrossRef K. Morsi, A. Esawi, Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)-CNT composite powders. J. Mater. Sci. 42, 4954–4959 (2007)CrossRef
52.
go back to reference Y. Wu, G.Y. Kim, A.M. Russell, Effects of mechanical alloying on an Al6061-CNT composite fabricated by semi-solid powder processing. Mater. Sci. Eng. A 538, 164–172 (2012)CrossRef Y. Wu, G.Y. Kim, A.M. Russell, Effects of mechanical alloying on an Al6061-CNT composite fabricated by semi-solid powder processing. Mater. Sci. Eng. A 538, 164–172 (2012)CrossRef
53.
go back to reference A.M. Samuel, J. Gauthier, F.H. Samuel, Microstructural aspects of the dissolution and melting of Al2Cu phase in Al–Si alloys during solution heat treatment. Metall. Mater. Trans. A 27A, 1785–1798 (1996)CrossRef A.M. Samuel, J. Gauthier, F.H. Samuel, Microstructural aspects of the dissolution and melting of Al2Cu phase in Al–Si alloys during solution heat treatment. Metall. Mater. Trans. A 27A, 1785–1798 (1996)CrossRef
54.
go back to reference C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A 444, 138–145 (2007)CrossRef C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A 444, 138–145 (2007)CrossRef
55.
go back to reference N. Nayan, S.V.S.N. Murty, S.C. Sharma, K.S. Kumar, P.P. Sinha, Calorimetric study on mechanically milled aluminum and multiwall carbon nanotube composites. Mater. Charact. 62, 1087–1093 (2011)CrossRef N. Nayan, S.V.S.N. Murty, S.C. Sharma, K.S. Kumar, P.P. Sinha, Calorimetric study on mechanically milled aluminum and multiwall carbon nanotube composites. Mater. Charact. 62, 1087–1093 (2011)CrossRef
56.
go back to reference A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos. Part A: Appl. Sci. Manuf. 42, 234–243 (2011)CrossRef A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos. Part A: Appl. Sci. Manuf. 42, 234–243 (2011)CrossRef
57.
go back to reference L. Bokobza, J.-L. Bruneel, M. Couzi, Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. Carbon 1, 77–94 (2015)CrossRef L. Bokobza, J.-L. Bruneel, M. Couzi, Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. Carbon 1, 77–94 (2015)CrossRef
58.
go back to reference X. Zhu, Y.G. Zhao, M. Wu, H.Y. Wang, Q.C. Jiang, Effect of initial aluminum alloy particle size on the damage of carbon nanotubes during ball milling. Materials 9, 173 (2016)CrossRef X. Zhu, Y.G. Zhao, M. Wu, H.Y. Wang, Q.C. Jiang, Effect of initial aluminum alloy particle size on the damage of carbon nanotubes during ball milling. Materials 9, 173 (2016)CrossRef
59.
go back to reference L. Kumar, S. Nasimul Alam, S.K. Sahoo, Mechanical properties, wear behavior and crystallographic texture of Al-multiwalled carbon nanotube composites developed by powder metallurgy route. J. Compos. Mater. 51, 1099–1117 (2016)CrossRef L. Kumar, S. Nasimul Alam, S.K. Sahoo, Mechanical properties, wear behavior and crystallographic texture of Al-multiwalled carbon nanotube composites developed by powder metallurgy route. J. Compos. Mater. 51, 1099–1117 (2016)CrossRef
60.
go back to reference T. Peng, I. Chang, Uniformly dispersion of carbon nanotube in aluminum powders by wet shake-mixing approach. Powder Technol. 284, 32–39 (2015)CrossRef T. Peng, I. Chang, Uniformly dispersion of carbon nanotube in aluminum powders by wet shake-mixing approach. Powder Technol. 284, 32–39 (2015)CrossRef
61.
go back to reference P. Van Trinh, N. Van Luan, P.N. Minh, D.D. Phuong, Effect of sintering temperature on properties of CNT/Al composite prepared by capsule-free hot isostatic pressing technique. Trans. Indian Inst. Met. 70, 947–955 (2017)CrossRef P. Van Trinh, N. Van Luan, P.N. Minh, D.D. Phuong, Effect of sintering temperature on properties of CNT/Al composite prepared by capsule-free hot isostatic pressing technique. Trans. Indian Inst. Met. 70, 947–955 (2017)CrossRef
62.
go back to reference A.M.K. Esawi, M.A. El Borady, Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68, 486–492 (2008)CrossRef A.M.K. Esawi, M.A. El Borady, Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68, 486–492 (2008)CrossRef
63.
go back to reference A.K. Shukla, N. Nayan, S.V.S.N. Murty, S.C. Sharma, P. Chandran, S.R. Bakshi, K.M. George, Processing of copper-carbon nanotube composites by vacuum hot pressing technique. Mater. Sci. Eng. A 560, 365–371 (2013)CrossRef A.K. Shukla, N. Nayan, S.V.S.N. Murty, S.C. Sharma, P. Chandran, S.R. Bakshi, K.M. George, Processing of copper-carbon nanotube composites by vacuum hot pressing technique. Mater. Sci. Eng. A 560, 365–371 (2013)CrossRef
64.
go back to reference N. Nayan, A.K. Shukla, P. Chandran, S.R. Bakshi, S.V.S.N. Murty, B. Pant, P.V. Venkitakrishnan, Processing and characterization of spark plasma sintered copper/carbon nanotube composites. Mater. Sci. Eng. A 682, 229–237 (2017)CrossRef N. Nayan, A.K. Shukla, P. Chandran, S.R. Bakshi, S.V.S.N. Murty, B. Pant, P.V. Venkitakrishnan, Processing and characterization of spark plasma sintered copper/carbon nanotube composites. Mater. Sci. Eng. A 682, 229–237 (2017)CrossRef
65.
go back to reference A. Eldesouky, M. Johnsson, H. Svengren, M.M. Attallah, H.G. Salem, Effect of grain size reduction of AA2124 aluminum alloy powder compacted by spark plasma sintering. J. Alloys Compd. 609, 215–221 (2014)CrossRef A. Eldesouky, M. Johnsson, H. Svengren, M.M. Attallah, H.G. Salem, Effect of grain size reduction of AA2124 aluminum alloy powder compacted by spark plasma sintering. J. Alloys Compd. 609, 215–221 (2014)CrossRef
66.
go back to reference A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70, 2237–2241 (2010)CrossRef A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70, 2237–2241 (2010)CrossRef
67.
go back to reference W. Tian, S. Li, B. Wang, X. Chen, J. Liu, M. Yu, Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int. J. Min. Metall. Mater. 23, 723–729 (2016)CrossRef W. Tian, S. Li, B. Wang, X. Chen, J. Liu, M. Yu, Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int. J. Min. Metall. Mater. 23, 723–729 (2016)CrossRef
Metadata
Title
Processing and Characterization of Graphene and Multi-wall Carbon Nanotube-Reinforced Aluminium Alloy AA2219 Composites Processed by Ball Milling and Vacuum Hot Pressing
Authors
Lava Kumar Pillari
A. K. Shukla
S. V. S. Narayana Murty
V. Umasankar
Publication date
23-06-2017
Publisher
Springer US
Published in
Metallography, Microstructure, and Analysis / Issue 4/2017
Print ISSN: 2192-9262
Electronic ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-017-0365-6

Other articles of this Issue 4/2017

Metallography, Microstructure, and Analysis 4/2017 Go to the issue

Premium Partners