Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2020

22-10-2020

Properties of CdSe1−xSx films by magnetron sputtering and their role in CdTe solar cells

Authors: Chunxiu Li, Ailing Wang, Lili Wu, Xu He, Jingquan Zhang, Xia Hao, Lianghuan Feng

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

CdS/CdSe composite window layer is a better candidate than CdS or CdSe single layer for CdTe solar cells. In order to find the underlying reason, the properties of co-sputtered CdSe1−xSx thin films with different compositions (\(0\le x\le 1\)) were examined. XRD patterns show that all CdSe1−xSx films (\(0\le x\le 1\)) are polycrystalline with hexagonal structures and the prominent peak position shows an increasing trend with the increase of x. This suggests that CdSe1−xSx window layer with a gradient composition, formed during the high-temperature growth and heat treatment of CdTe films, has the gradient lattice constant, meaning the less defect density. This is beneficial to the device performance. Hall measurements show that CdS1−xSex films (x ≥ 0.772) are n-type semiconductors with carrier concentrations ranging from 1015 cm−3 to 1016 cm−3. It reveals that CdS/CdSe bi-layers can form a strong built-in electric field with CdTe layer as CdS does. The electronic band structure of CdSe1−xSx window layer with a gradient composition suggests that the spikes formed in the conduction band are lower than 0.3 eV, which would not impede the electron transport. The valence band alignment is beneficial for the hole transport. Therefore, an appropriate band alignment can be formed between CdSe1−xSx and CdTe layers. These results reveal that CdSe1−xSx film is a good candidate as the window layer for high-efficiency CdTe solar cells considering its structural, optical and electrical properties as well as its electronic structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference M.O. Reese, S. Glynn, M.D. Kempe, D.L. McGott, M.S. Dabney, T.M. Barnes, S. Booth, D. Feldman, N.M. Haegel, Increasing markets and decreasing package weight for high-specific-power photovoltaics. Nat. Energy 3, 1002–1012 (2018)CrossRef M.O. Reese, S. Glynn, M.D. Kempe, D.L. McGott, M.S. Dabney, T.M. Barnes, S. Booth, D. Feldman, N.M. Haegel, Increasing markets and decreasing package weight for high-specific-power photovoltaics. Nat. Energy 3, 1002–1012 (2018)CrossRef
2.
go back to reference M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26, 3–12 (2018)CrossRef M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26, 3–12 (2018)CrossRef
3.
go back to reference Z. Weng, S. Ma, H. Zhu, Z. Ye, T. Shu, J. Zhou, X. Wu, H. Wu, CdTe thin film solar cells with a SnTe buffer layer in back contact. Sol. Energy Mater. Sol. Cells 179, 276–282 (2018)CrossRef Z. Weng, S. Ma, H. Zhu, Z. Ye, T. Shu, J. Zhou, X. Wu, H. Wu, CdTe thin film solar cells with a SnTe buffer layer in back contact. Sol. Energy Mater. Sol. Cells 179, 276–282 (2018)CrossRef
4.
go back to reference I. Rimmaudo, A. Salavei, B.L. Xu, S. Di Mare, A. Romeo, Superior stability of ultra thin CdTe solar cells with simple Cu/Au back contact. Thin Solid Films 582, 105–109 (2015)CrossRef I. Rimmaudo, A. Salavei, B.L. Xu, S. Di Mare, A. Romeo, Superior stability of ultra thin CdTe solar cells with simple Cu/Au back contact. Thin Solid Films 582, 105–109 (2015)CrossRef
5.
go back to reference N.R. Paudel, Y.F. Yan, Application of copper thiocyanate for high open-circuit voltages of CdTe solar cells. Prog. Photovolt. 24, 94–101 (2016)CrossRef N.R. Paudel, Y.F. Yan, Application of copper thiocyanate for high open-circuit voltages of CdTe solar cells. Prog. Photovolt. 24, 94–101 (2016)CrossRef
6.
go back to reference J.J. Li, D.R. Diercks, T.R. Ohno, C.W. Warren, M.C. Lonergan, J.D. Beach, C.A. Wolden, Controlled activation of ZnTe: Cu contacted CdTe solar cells using rapid thermal processing. Sol. Energy Mater. Sol. Cells 133, 208–215 (2015)CrossRef J.J. Li, D.R. Diercks, T.R. Ohno, C.W. Warren, M.C. Lonergan, J.D. Beach, C.A. Wolden, Controlled activation of ZnTe: Cu contacted CdTe solar cells using rapid thermal processing. Sol. Energy Mater. Sol. Cells 133, 208–215 (2015)CrossRef
7.
go back to reference Y. Yang, T. Wang, C. Liu, W. Li, J. Zhang, L. Wu, G. Zeng, W. Wang, M. Yu, Single-phase control of CuTe thin films for CdTe solar cells. Vacuum 142, 181–185 (2017)CrossRef Y. Yang, T. Wang, C. Liu, W. Li, J. Zhang, L. Wu, G. Zeng, W. Wang, M. Yu, Single-phase control of CuTe thin films for CdTe solar cells. Vacuum 142, 181–185 (2017)CrossRef
8.
go back to reference A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016)CrossRef A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016)CrossRef
9.
go back to reference A.H. Munshi, J.M. Kephart, A. Abbas, T.M. Shimpi, K.L. Barth, J.M. Walls, W.S. Sampath, Polycrystalline CdTe photovoltaics with efficiency over 18% through improved absorber passivation and current collection. Sol. Energy Mater. Sol. Cells 176, 9–18 (2018)CrossRef A.H. Munshi, J.M. Kephart, A. Abbas, T.M. Shimpi, K.L. Barth, J.M. Walls, W.S. Sampath, Polycrystalline CdTe photovoltaics with efficiency over 18% through improved absorber passivation and current collection. Sol. Energy Mater. Sol. Cells 176, 9–18 (2018)CrossRef
10.
go back to reference S.H. Wei, S.B. Zhang, A. Zunger, First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J. Appl. Phys. 87, 1304–1311 (2000)CrossRef S.H. Wei, S.B. Zhang, A. Zunger, First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J. Appl. Phys. 87, 1304–1311 (2000)CrossRef
11.
go back to reference N.R. Paudel, Y.F. Yan, Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions. Appl. Phys. Lett. 105, 1–5 (2014) N.R. Paudel, Y.F. Yan, Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions. Appl. Phys. Lett. 105, 1–5 (2014)
12.
go back to reference T. Baines, G. Zoppi, L. Bowen, T.P. Shalvey, S. Mariotti, K. Durose, J.D. Major, Incorporation of CdSe layers into CdTe thin film solar cells. Sol. Energy Mater. Sol. Cells 180, 196–204 (2018)CrossRef T. Baines, G. Zoppi, L. Bowen, T.P. Shalvey, S. Mariotti, K. Durose, J.D. Major, Incorporation of CdSe layers into CdTe thin film solar cells. Sol. Energy Mater. Sol. Cells 180, 196–204 (2018)CrossRef
13.
go back to reference Z. Bao, X. Yang, B. Li, R. Luo, B. Liu, P. Tang, J. Zhang, L. Wu, W. Li, L. Feng, The study of CdSe thin film prepared by pulsed laser deposition for CdSe/CdTe solar cell. J. Mater. Sci.-Mater. Electron. 27, 7233–7239 (2016)CrossRef Z. Bao, X. Yang, B. Li, R. Luo, B. Liu, P. Tang, J. Zhang, L. Wu, W. Li, L. Feng, The study of CdSe thin film prepared by pulsed laser deposition for CdSe/CdTe solar cell. J. Mater. Sci.-Mater. Electron. 27, 7233–7239 (2016)CrossRef
14.
go back to reference Z. Bao, L. Liu, X. Yang, P. Tang, K. Yang, H. Lu, S. He, J. Liu, X. Liu, B. Li, Synthesis and characterization of novel oxygenated CdSe window layer for CdTe thin film solar cells. Mater. Sci. Semicond. Process. 63, 12–17 (2017)CrossRef Z. Bao, L. Liu, X. Yang, P. Tang, K. Yang, H. Lu, S. He, J. Liu, X. Liu, B. Li, Synthesis and characterization of novel oxygenated CdSe window layer for CdTe thin film solar cells. Mater. Sci. Semicond. Process. 63, 12–17 (2017)CrossRef
15.
go back to reference T. Wang, S. Ren, C. Li, W. Li, C. Liu, J. Zhang, L. Wu, B. Li, G. Zeng, Exploring window buffer layer technology to enhance CdTe solar cell performance. Sol. Energy 164, 180–186 (2018)CrossRef T. Wang, S. Ren, C. Li, W. Li, C. Liu, J. Zhang, L. Wu, B. Li, G. Zeng, Exploring window buffer layer technology to enhance CdTe solar cell performance. Sol. Energy 164, 180–186 (2018)CrossRef
16.
go back to reference S. Ren, H. Wang, Y. Li, H. Li, R. He, L. Wu, W. Li, J. Zhang, W. Wang, L. Feng, Rapid thermal annealing on ZnMgO window layer for improved performance of CdTe solar cells. Sol. Energy Mater. Sol. Cells 187, 97–103 (2018)CrossRef S. Ren, H. Wang, Y. Li, H. Li, R. He, L. Wu, W. Li, J. Zhang, W. Wang, L. Feng, Rapid thermal annealing on ZnMgO window layer for improved performance of CdTe solar cells. Sol. Energy Mater. Sol. Cells 187, 97–103 (2018)CrossRef
17.
go back to reference X. Fang, S. Ren, C. Li, C. Li, G. Chen, H. Lai, J. Zhang, L. Wu, Investigation of recombination mechanisms of CdTe solar cells with different buffer layers. Sol. Energy Mater. Sol. Cells 188, 93–98 (2018)CrossRef X. Fang, S. Ren, C. Li, C. Li, G. Chen, H. Lai, J. Zhang, L. Wu, Investigation of recombination mechanisms of CdTe solar cells with different buffer layers. Sol. Energy Mater. Sol. Cells 188, 93–98 (2018)CrossRef
18.
go back to reference C. Li, F. Wang, Y. Chen, L. Wu, J. Zhang, W. Li, X. He, B. Li, L. Feng, Characterization of sputtered CdSe thin films as the window layer for CdTe solar cells. Mater. Sci. Semicond. Process. 83, 89–95 (2018)CrossRef C. Li, F. Wang, Y. Chen, L. Wu, J. Zhang, W. Li, X. He, B. Li, L. Feng, Characterization of sputtered CdSe thin films as the window layer for CdTe solar cells. Mater. Sci. Semicond. Process. 83, 89–95 (2018)CrossRef
19.
go back to reference T.A. Fiducia, B.G. Mendis, K. Li, C.R. Grovenor, A. Munshi, K. Barth, W. Sampath, L.D. Wright, A. Abbas, J.W. Bowers, J.M. Walls, Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells. Nat. Energy 4, 504–511 (2019)CrossRef T.A. Fiducia, B.G. Mendis, K. Li, C.R. Grovenor, A. Munshi, K. Barth, W. Sampath, L.D. Wright, A. Abbas, J.W. Bowers, J.M. Walls, Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells. Nat. Energy 4, 504–511 (2019)CrossRef
20.
go back to reference A.H. Munshi, J.M. Kephart, A. Abbas, A. Danielson, G. Gelinas, J.-N. Beaudry, K.L. Barth, J.M. Walls, W.S. Sampath, Effect of CdCl2 passivation treatment on microstructure and performance of CdSeTe/CdTe thin-film photovoltaic devices. Sol. Energy Mater. Sol. Cells 186, 259–265 (2018)CrossRef A.H. Munshi, J.M. Kephart, A. Abbas, A. Danielson, G. Gelinas, J.-N. Beaudry, K.L. Barth, J.M. Walls, W.S. Sampath, Effect of CdCl2 passivation treatment on microstructure and performance of CdSeTe/CdTe thin-film photovoltaic devices. Sol. Energy Mater. Sol. Cells 186, 259–265 (2018)CrossRef
21.
go back to reference T. Baines, L. Bowen, B.G. Mendis, J.D. Major, Microscopic analysis of interdiffusion and void formation in CdTe1-xSex and CdTe layers. ACS Appl. Mater. Interfaces 12, 38070–38075 (2020)CrossRef T. Baines, L. Bowen, B.G. Mendis, J.D. Major, Microscopic analysis of interdiffusion and void formation in CdTe1-xSex and CdTe layers. ACS Appl. Mater. Interfaces 12, 38070–38075 (2020)CrossRef
22.
go back to reference S. Ren, T. Tang, Y. Liu, C. Li, L. Wu, W. Li, J. Zhang, W. Wang, L. Feng, Annealing atmosphere effects on the surface properties of Cd2SnO4 thin films obtained by RF sputtering. Mater. Sci. Semicond. Process. 75, 269–275 (2018)CrossRef S. Ren, T. Tang, Y. Liu, C. Li, L. Wu, W. Li, J. Zhang, W. Wang, L. Feng, Annealing atmosphere effects on the surface properties of Cd2SnO4 thin films obtained by RF sputtering. Mater. Sci. Semicond. Process. 75, 269–275 (2018)CrossRef
23.
go back to reference J.C. Manifacier, M.D. Murcia, J.P. Fillard, Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their stoichiometric deviation and their crystalline structure. Thin Solid Films 41, 127–135 (1977)CrossRef J.C. Manifacier, M.D. Murcia, J.P. Fillard, Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their stoichiometric deviation and their crystalline structure. Thin Solid Films 41, 127–135 (1977)CrossRef
24.
go back to reference J.G. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film. J. Phys. E 9, 1002–1004 (1976)CrossRef J.G. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film. J. Phys. E 9, 1002–1004 (1976)CrossRef
25.
go back to reference G.K. Liyanage, A.B. Phillips, M.J. Heben, Role of band alignment at the transparent front contact/emitter interface in the performance of wide bandgap thin film solar cells. APL Mater. 6, 1–8 (2018)CrossRef G.K. Liyanage, A.B. Phillips, M.J. Heben, Role of band alignment at the transparent front contact/emitter interface in the performance of wide bandgap thin film solar cells. APL Mater. 6, 1–8 (2018)CrossRef
26.
go back to reference J.M. Kephart, J.W. McCamy, Z. Ma, A. Ganjoo, F.M. Alamgir, W.S. Sampath, Band alignment of front contact layers for high-efficiency CdTe solar cells. Sol. Energy Mater. Sol. Cells 157, 266–275 (2016)CrossRef J.M. Kephart, J.W. McCamy, Z. Ma, A. Ganjoo, F.M. Alamgir, W.S. Sampath, Band alignment of front contact layers for high-efficiency CdTe solar cells. Sol. Energy Mater. Sol. Cells 157, 266–275 (2016)CrossRef
Metadata
Title
Properties of CdSe1−xSx films by magnetron sputtering and their role in CdTe solar cells
Authors
Chunxiu Li
Ailing Wang
Lili Wu
Xu He
Jingquan Zhang
Xia Hao
Lianghuan Feng
Publication date
22-10-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04659-y

Other articles of this Issue 23/2020

Journal of Materials Science: Materials in Electronics 23/2020 Go to the issue