Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2020

22-10-2020

Improve the low-temperature electrochemical performance of Li4Ti5O12 anode materials by ion doping

Authors: Chunlin Li, Qian Huang, Jian Mao

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We adopt the strategy of doping ions of Mg2+, Cr3+, and F into Li4Ti5O12 (LTO) to substitute Li, Ti, and O, respectively (called the corresponding sample Mg-LTO, Cr-LTO, and F-LTO, respectively), and investigated its influences on the low-temperature electrochemical performance of LTO. After doping, the electrical conductivity of Mg-LTO, Cr-LTO, and F-LTO increased from less than < 10− 13 S cm− 1 to 3.07 × 10− 7 S cm− 1, 5.57 × 10− 7 S cm− 1, and 7.04 × 10− 7 S cm− 1, respectively. Structural refinement shows that doping has little effect on the radius of the crystal diffusion sites. Further research shows that the main reason for the improvement of low-temperature electrochemical performance is that doping affects the electrical conductivity, micromorphology, and phase composition of LTO. At −20 °C/10 C (1C corresponding to 175 mAh g− 1), the discharge capacities of Mg-LTO, Cr-LTO and, F-LTO are 113 mAh g− 1, 123 mAh g− 1, and 128 mAh g− 1, respectively. As a contrast, there is no discharge capacity for Pure LTO at the same conditions. After 600 cycles at −20 °C/5C, the discharge capacities of the sample of Pure LTO, Mg-LTO, Cr-LTO, and F-LTO are 69.7 mAh g− 1, 107.5 mAh g− 1, 142.3 mAh g− 1, and 133.2 mAh g− 1, respectively. Mg-LTO, Cr-LTO, and F-LTO exhibit excellent low-temperature rate performance and cycling stability. The related electrochemical factors and materials structure mechanisms involved were discussed in detail.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference A.N. Jansen, A.J. Kahaian, K.D. Kepler, P.A. Nelson, K. Amine, D.W. Dees, D.R. Vissers, M.M. Thackeray, Development of a high-power lithium-ion battery. J. Power Sources 81, 902–905 (1999)CrossRef A.N. Jansen, A.J. Kahaian, K.D. Kepler, P.A. Nelson, K. Amine, D.W. Dees, D.R. Vissers, M.M. Thackeray, Development of a high-power lithium-ion battery. J. Power Sources 81, 902–905 (1999)CrossRef
2.
go back to reference T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li[Li1/3Ti5/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995)CrossRef T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li[Li1/3Ti5/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995)CrossRef
3.
go back to reference S. Li, J. Mao, Enhanced the electrochemical performance of Li4Ti5O12 anode materials by high conductive graphene nanosheets. J. Mater. Sci. Mater. Electron. 28, 15135–15141 (2017)CrossRef S. Li, J. Mao, Enhanced the electrochemical performance of Li4Ti5O12 anode materials by high conductive graphene nanosheets. J. Mater. Sci. Mater. Electron. 28, 15135–15141 (2017)CrossRef
4.
go back to reference L.X. Zou, H. Feng, X, Chromium-Modified Li4Ti5O12 with a Synergistic Effect of Bulk Doping, Surface Coating, and Size Reducing. ACS Appl. Mater. Interfaces 8, 21407–21416 (2016)CrossRef L.X. Zou, H. Feng, X, Chromium-Modified Li4Ti5O12 with a Synergistic Effect of Bulk Doping, Surface Coating, and Size Reducing. ACS Appl. Mater. Interfaces 8, 21407–21416 (2016)CrossRef
5.
go back to reference H.Y. Zhang, P. Jia, W, Improved rate capability and cycling stability of novel terbium-doped lithium titanate for lithium-ion batteries. Electrochim. Acta 210, 935–941 (2016)CrossRef H.Y. Zhang, P. Jia, W, Improved rate capability and cycling stability of novel terbium-doped lithium titanate for lithium-ion batteries. Electrochim. Acta 210, 935–941 (2016)CrossRef
6.
go back to reference X.-P. Li, J. Mao, Sol-hydrothermal synthesis of Li4Ti5O12/rutile-TiO2 composite as high rate anode material for lithium ion batteries. Ceram. Int. 40, 13553–13558 (2014)CrossRef X.-P. Li, J. Mao, Sol-hydrothermal synthesis of Li4Ti5O12/rutile-TiO2 composite as high rate anode material for lithium ion batteries. Ceram. Int. 40, 13553–13558 (2014)CrossRef
7.
go back to reference A.G. Kashkooli, G. Lui, S. Farhad, D.U. Lee, K. Feng, A. Yu, Z. Chen, Nano-particle size effect on the performance of Li4Ti5O12 spinel. Electrochim. Acta 196, 33–40 (2016)CrossRef A.G. Kashkooli, G. Lui, S. Farhad, D.U. Lee, K. Feng, A. Yu, Z. Chen, Nano-particle size effect on the performance of Li4Ti5O12 spinel. Electrochim. Acta 196, 33–40 (2016)CrossRef
8.
go back to reference Q. Huang, Z. Yang, J. Mao, Research progress on the low-temperature electrochemical performance of Li4Ti5O12 anode material. Ionics 23, 803–811 (2017)CrossRef Q. Huang, Z. Yang, J. Mao, Research progress on the low-temperature electrochemical performance of Li4Ti5O12 anode material. Ionics 23, 803–811 (2017)CrossRef
9.
go back to reference H.L. Zou, H.F. Xiang, X. Liang, X.Y. Feng, S. Cheng, Y. Jin, C.H. Chen, Electrospun Li3.9Cr0.3Ti4.8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. J. Alloy. Compd. 701, 99–106 (2017)CrossRef H.L. Zou, H.F. Xiang, X. Liang, X.Y. Feng, S. Cheng, Y. Jin, C.H. Chen, Electrospun Li3.9Cr0.3Ti4.8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. J. Alloy. Compd. 701, 99–106 (2017)CrossRef
10.
go back to reference M. Marinaro, F. Nobili, A. Birrozzi, S.K. Eswara Moorthy, U. Kaiser, R. Tossici, R. Marassi, Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries. Electrochim. Acta 109, 207–213 (2013)CrossRef M. Marinaro, F. Nobili, A. Birrozzi, S.K. Eswara Moorthy, U. Kaiser, R. Tossici, R. Marassi, Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries. Electrochim. Acta 109, 207–213 (2013)CrossRef
11.
go back to reference Y. Zhang, Y. Luo, Y. Chen, T. Lu, L. Yang, X. Cui, J. Xie, Enhanced Rate Capability and Low-Temperature Performance of Li4Ti5O12 Anode Material by Facile Surface Fluorination. ACS Appl. Mater. Interfaces 9, 17146–17155 (2017) Y. Zhang, Y. Luo, Y. Chen, T. Lu, L. Yang, X. Cui, J. Xie, Enhanced Rate Capability and Low-Temperature Performance of Li4Ti5O12 Anode Material by Facile Surface Fluorination. ACS Appl. Mater. Interfaces 9, 17146–17155 (2017)
12.
go back to reference Y. Tao, Y. Xing, C. Rui, Y. Zhou, Z. Shao, Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J. Power Sources 195, 4997–5004 (2010)CrossRef Y. Tao, Y. Xing, C. Rui, Y. Zhou, Z. Shao, Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J. Power Sources 195, 4997–5004 (2010)CrossRef
13.
go back to reference Y.J. Bai, C. Gong, Y.X. Qi, N. Lun, J. Feng, Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates. J. Mater. Chem. 22, 19054–19060 (2012)CrossRef Y.J. Bai, C. Gong, Y.X. Qi, N. Lun, J. Feng, Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates. J. Mater. Chem. 22, 19054–19060 (2012)CrossRef
14.
go back to reference O. Dolotko, A. Senyshyn, M.J. Mühlbauer, H. Boysen, M. Monchak, H. Ehrenberg, Neutron diffraction study of Li4Ti5O12 at low temperatures. Solid State Sci. 36, 101–106 (2014)CrossRef O. Dolotko, A. Senyshyn, M.J. Mühlbauer, H. Boysen, M. Monchak, H. Ehrenberg, Neutron diffraction study of Li4Ti5O12 at low temperatures. Solid State Sci. 36, 101–106 (2014)CrossRef
15.
go back to reference A.C. Larson, R.B. Von Dreele, Gsas. Report lAUR 86–748 (1994) A.C. Larson, R.B. Von Dreele, Gsas. Report lAUR 86–748 (1994)
16.
go back to reference B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)CrossRef B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)CrossRef
17.
go back to reference C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, M.M. Thackeray, Studies of Mg-Substituted Li4 – xMg x Ti5 O12 Spinel Electrodes (0 ⩽ x ⩽ 1) for Lithium Batteries. J. Electrochem. Soc. 148, A102–A104 (2001)CrossRef C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, M.M. Thackeray, Studies of Mg-Substituted Li4 – xMg x Ti5 O12 Spinel Electrodes (0 ⩽ x ⩽ 1) for Lithium Batteries. J. Electrochem. Soc. 148, A102–A104 (2001)CrossRef
18.
go back to reference H. Cho, H. Son, D. Kim, M. Lee, S. Boateng, H. Han, K.M. Kim, S. Kim, H. Choi, T. Song, K.H. Lee, Impact of Mg-Doping Site Control in the Performance of Li4Ti5O12 Li-Ion Battery Anode: First-Principles Predictions and Experimental Verifications. J. Phys. Chem. C 121, 14994–15001 (2017)CrossRef H. Cho, H. Son, D. Kim, M. Lee, S. Boateng, H. Han, K.M. Kim, S. Kim, H. Choi, T. Song, K.H. Lee, Impact of Mg-Doping Site Control in the Performance of Li4Ti5O12 Li-Ion Battery Anode: First-Principles Predictions and Experimental Verifications. J. Phys. Chem. C 121, 14994–15001 (2017)CrossRef
19.
go back to reference C. Lin, B. Ding, Y. Xin, F. Cheng, M.O. Lai, L. Lu, H. Zhou, Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: Synergistic effect of doping and compositing. J. Power Sources 248, 1034–1041 (2014)CrossRef C. Lin, B. Ding, Y. Xin, F. Cheng, M.O. Lai, L. Lu, H. Zhou, Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: Synergistic effect of doping and compositing. J. Power Sources 248, 1034–1041 (2014)CrossRef
20.
go back to reference H. Zou, X. Liang, X. Feng, H. Xiang, Chromium-Modified Li4Ti5O12 with a Synergistic Effect of Bulk Doping, Surface Coating, and Size Reducing. ACS Appl. Mater. Interfaces 8, 21407–21416 (2016)CrossRef H. Zou, X. Liang, X. Feng, H. Xiang, Chromium-Modified Li4Ti5O12 with a Synergistic Effect of Bulk Doping, Surface Coating, and Size Reducing. ACS Appl. Mater. Interfaces 8, 21407–21416 (2016)CrossRef
21.
go back to reference F. Li, M. Zeng, J. Li, H. Xu, Preparation and Electrochemical Performance of Mg-doped Li4Ti5O12 Nanoparticles as Anode Materials for Lithium-Ion Batteries. Int. J. Electrochem. Sc. 10, 10445–10453 (2015) F. Li, M. Zeng, J. Li, H. Xu, Preparation and Electrochemical Performance of Mg-doped Li4Ti5O12 Nanoparticles as Anode Materials for Lithium-Ion Batteries. Int. J. Electrochem. Sc. 10, 10445–10453 (2015)
22.
go back to reference H. Song, T.-G. Jeong, S.-W. Yun, E.-K. Lee, S.-A. Park, Y.-T. Kim, An upper limit of Cr-doping level to Retain Zero-strain Characteristics of Li4Ti5O12 Anode Material for Li-ion Batteries. Sci. Rep. 7, (2017) H. Song, T.-G. Jeong, S.-W. Yun, E.-K. Lee, S.-A. Park, Y.-T. Kim, An upper limit of Cr-doping level to Retain Zero-strain Characteristics of Li4Ti5O12 Anode Material for Li-ion Batteries. Sci. Rep. 7, (2017)
23.
go back to reference A.D. Robertson, L. Trevino, H. Tukamoto, J.T.S. Irvine, New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries. J. Power Sources 81, 352–357 (1999)CrossRef A.D. Robertson, L. Trevino, H. Tukamoto, J.T.S. Irvine, New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries. J. Power Sources 81, 352–357 (1999)CrossRef
24.
go back to reference X. Li, J. Mao, A. Li, Ti5O12–rutile TiO2 nanocomposite with an excellent high rate cycling stability for lithium ion batteries. New J. Chem. 39 4, 4430–4436 (2015)CrossRef X. Li, J. Mao, A. Li, Ti5O12–rutile TiO2 nanocomposite with an excellent high rate cycling stability for lithium ion batteries. New J. Chem. 39 4, 4430–4436 (2015)CrossRef
25.
go back to reference H. Song, S.W. Yun, H.H. Chun, M.G. Kim, K.Y. Chung, H.S. Kim, B.W. Cho, Y.T. Kim, Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy Environ. Sci. 5, 9903–9913 (2012)CrossRef H. Song, S.W. Yun, H.H. Chun, M.G. Kim, K.Y. Chung, H.S. Kim, B.W. Cho, Y.T. Kim, Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy Environ. Sci. 5, 9903–9913 (2012)CrossRef
26.
go back to reference X. Han, Z. Zhao, Y. Xu, D. Liu, H. Zhang, C. Zhao, Synthesis and characterization of F-doped nanocrystalline Li4Ti5O12/C compounds for lithium-ion batteries. Rsc Adv. 4, 41968–41975 (2014)CrossRef X. Han, Z. Zhao, Y. Xu, D. Liu, H. Zhang, C. Zhao, Synthesis and characterization of F-doped nanocrystalline Li4Ti5O12/C compounds for lithium-ion batteries. Rsc Adv. 4, 41968–41975 (2014)CrossRef
27.
go back to reference W. Wang, B. Jiang, W. Xiong, Z. Wang, S. Jiao, A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries. Electrochim. Acta 114, 198–204 (2013)CrossRef W. Wang, B. Jiang, W. Xiong, Z. Wang, S. Jiao, A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries. Electrochim. Acta 114, 198–204 (2013)CrossRef
28.
go back to reference D. Liu, C. Ouyang, J. Shu, J. Jiang, Z. Wang, L. Chen, Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. Phys. Status Solidi B 243, 1835–1841 (2006)CrossRef D. Liu, C. Ouyang, J. Shu, J. Jiang, Z. Wang, L. Chen, Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. Phys. Status Solidi B 243, 1835–1841 (2006)CrossRef
29.
go back to reference Z. Zhao, Y. Xu, M. Ji, H. Zhang, Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries. Electrochim. Acta 109, 645–650 (2013)CrossRef Z. Zhao, Y. Xu, M. Ji, H. Zhang, Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries. Electrochim. Acta 109, 645–650 (2013)CrossRef
30.
go back to reference Y. Chen, C. Qian, P. Zhang, R. Zhao, J. Lu, M. Chen, Fluoride doping Li4Ti5O12 nanosheets as anode materials for enhanced rate performance of lithium-ion batteries. J. Electroanal. Chem. 815, 123–129 (2018)CrossRef Y. Chen, C. Qian, P. Zhang, R. Zhao, J. Lu, M. Chen, Fluoride doping Li4Ti5O12 nanosheets as anode materials for enhanced rate performance of lithium-ion batteries. J. Electroanal. Chem. 815, 123–129 (2018)CrossRef
31.
go back to reference Y. Ma, B. Ding, G. Ji, J.Y. Lee, Carbon-Encapsulated F-Doped Li4Ti5O12 as a High Rate Anode Material for Li+ Batteries. Acs Nano 7, 10870–10878 (2013)CrossRef Y. Ma, B. Ding, G. Ji, J.Y. Lee, Carbon-Encapsulated F-Doped Li4Ti5O12 as a High Rate Anode Material for Li+ Batteries. Acs Nano 7, 10870–10878 (2013)CrossRef
32.
go back to reference Q. Huang, Z. Yang, J. Mao, Mechanisms of the decrease in low-temperature electrochemical performance of Li4Ti5O12-based anode materials. Sci. Rep. 7, (2017) Q. Huang, Z. Yang, J. Mao, Mechanisms of the decrease in low-temperature electrochemical performance of Li4Ti5O12-based anode materials. Sci. Rep. 7, (2017)
33.
go back to reference R.W.G. Wyckoff, Crystal Structures. (Interscience Publishers, 1963) R.W.G. Wyckoff, Crystal Structures. (Interscience Publishers, 1963)
34.
go back to reference J. Zemann, Die Kristallstruktur von Li2CO3. Acta Crystallogr. 10, 664–666 (1957)CrossRef J. Zemann, Die Kristallstruktur von Li2CO3. Acta Crystallogr. 10, 664–666 (1957)CrossRef
35.
go back to reference H. Ott, XI. Die Strukturen von MnO, MnS, AgF, NiS, SnJ4, SrCl2, BaF2; Präzisionsmessungen einiger Alkalihalogenide. Z. Krist-Cryst. Mater. (1926) H. Ott, XI. Die Strukturen von MnO, MnS, AgF, NiS, SnJ4, SrCl2, BaF2; Präzisionsmessungen einiger Alkalihalogenide. Z. Krist-Cryst. Mater. (1926)
36.
go back to reference J. Sugiyama, H. Nozaki, I. Umegaki, K. Mukai, K. Miwa, S. Shiraki, T. Hitosugi, A. Suter, T. Prokscha, Z. Salman, J.S. Lord, M. Månsson, Li-ion diffusion in Li4Ti5O12 and LiTi2O4 battery materials detected by muon spin spectroscopy. Phys. Rev. B 92, (2015) J. Sugiyama, H. Nozaki, I. Umegaki, K. Mukai, K. Miwa, S. Shiraki, T. Hitosugi, A. Suter, T. Prokscha, Z. Salman, J.S. Lord, M. Månsson, Li-ion diffusion in Li4Ti5O12 and LiTi2O4 battery materials detected by muon spin spectroscopy. Phys. Rev. B 92, (2015)
37.
go back to reference S. Scharner, W. Weppner, P. Schmid-Beurmann, Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel. J. Electrochem. Soc. 146, 857–861 (1999)CrossRef S. Scharner, W. Weppner, P. Schmid-Beurmann, Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel. J. Electrochem. Soc. 146, 857–861 (1999)CrossRef
38.
go back to reference W. Schmidt, M. Wilkening, Discriminating the Mobile Ions from the Immobile Ones in Li4 + x Ti5O12: Li-6 NMR Reveals the Main Li+ Diffusion Pathway and Proposes a Refined Lithiation Mechanism. J. Phys. Chem. C 120, 11372–11381 (2016)CrossRef W. Schmidt, M. Wilkening, Discriminating the Mobile Ions from the Immobile Ones in Li4 + x Ti5O12: Li-6 NMR Reveals the Main Li+ Diffusion Pathway and Proposes a Refined Lithiation Mechanism. J. Phys. Chem. C 120, 11372–11381 (2016)CrossRef
39.
go back to reference S. Tanaka, M. Kitta, T. Tamura, Y. Maeda, T. Akita, M. Kohyama, Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12(001) interfaces by first-principles calculations. J. Mater. Sci. 49, 4032–4037 (2014)CrossRef S. Tanaka, M. Kitta, T. Tamura, Y. Maeda, T. Akita, M. Kohyama, Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12(001) interfaces by first-principles calculations. J. Mater. Sci. 49, 4032–4037 (2014)CrossRef
Metadata
Title
Improve the low-temperature electrochemical performance of Li4Ti5O12 anode materials by ion doping
Authors
Chunlin Li
Qian Huang
Jian Mao
Publication date
22-10-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04658-z

Other articles of this Issue 23/2020

Journal of Materials Science: Materials in Electronics 23/2020 Go to the issue