Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2020

26-10-2020

Synthesis, characterizations and quantum chemical calculations of the spinel structure of Fe3O4 nanoparticles

Authors: C. Rajeevgandhi, S. Bharanidharan, S. Savithiri, L. Guganathan, P. Sugumar, K. Sathiyamurthy, K. Mohan

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, attractive Fe3O4 NPs have been developed as emerging materials for its broad scope use in various fields. In this era, preparation of Fe3O4 NPs with attractive properties and high-energy potential applications are deeply demanded. In general, the spinel type of Fe3O4 NPs showed many attractive fields of soft magnetic applications. Spinel Fe3O4 NPs are synthesized by simple co-precipitation and characterized using TG/DTA, XRD, FT-IR, FE-SEM, HR-TEM and VSM. The crystallinity of ferric oxide NPs belongs to the cubic type which is confirmed by XRD. FE-SEM image indicates the morphological analysis of a uniform particle distribution with a mean crystallite size of 14 nm can be seen which is confirmed by HR-TEM. In addition, spinel Fe3O4 NPs ferromagnetic order at the low magnetic field strength is confirmed by VSM. Theoretical investigations of the metal oxide complex were done by utilizing a DFT/B3LYP/LANL2DZ basis set. The optimized bond parameters (bond lengths, bond angles and dihedral angles) were determined utilizing identical level of basis set. The NLO properties of the title compound were calculated utilizing a first-order hyperpolarizability calculation. The Homo–Lumo, which clarifies the possible charge transfer, happens inside the atom. MEP gives the visual account in chemically dynamic sites and comparative reactivity of atoms. Moreover, Mulliken atomic charges were also estimated and analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.S. Islam, Y. Kusumoto, J. Kurawaki, M. Abdulla-Al-Mamun, H. Manaka, A comparative study on heat dissipation, morphological and magnetic properties of hyperthermia suitable nanoparticles prepared by co-precipitation and hydrothermal methods. Bull. Mater. Sci. 35(7), 1047–1053 (2012)CrossRef M.S. Islam, Y. Kusumoto, J. Kurawaki, M. Abdulla-Al-Mamun, H. Manaka, A comparative study on heat dissipation, morphological and magnetic properties of hyperthermia suitable nanoparticles prepared by co-precipitation and hydrothermal methods. Bull. Mater. Sci. 35(7), 1047–1053 (2012)CrossRef
2.
go back to reference R.M. Cornell, U. Schwertmann, The Iron Oxides. Structure, Properties, Reaction Occurrence and Uses (VCH, Weinheim, 1996) R.M. Cornell, U. Schwertmann, The Iron Oxides. Structure, Properties, Reaction Occurrence and Uses (VCH, Weinheim, 1996)
3.
go back to reference B.I. Kharisov, H.V. Rasika Dias, O.V. Kharissova, V. Manuel Jiménez-Pérez, B. Olvera Pérez, B. Muñoz Flores, Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv. 2(25), 9325–9358 (2012)CrossRef B.I. Kharisov, H.V. Rasika Dias, O.V. Kharissova, V. Manuel Jiménez-Pérez, B. Olvera Pérez, B. Muñoz Flores, Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv. 2(25), 9325–9358 (2012)CrossRef
4.
go back to reference R.F. Soohoo, Theory and Application of Ferrites (Prentice-Hall Inc. , Englewood Cliffs, 1960) R.F. Soohoo, Theory and Application of Ferrites (Prentice-Hall Inc. , Englewood Cliffs, 1960)
5.
go back to reference O. Yalçın, Nanorods, in Nanotechnology and nanomaterials. (InTech, London, 2012) O. Yalçın, Nanorods, in Nanotechnology and nanomaterials. (InTech, London, 2012)
6.
go back to reference S.H. Al-Heniti, A. Umar, H.M. Zaki, G.N. Dar, A.A. Al-Ghamdi, S.H. Kim, Synthesis and characterizations of ferrite nanomaterials for phenyl hydrazine chemical sensor applications. J. Nanosci. Nanotechnol. 14(5), 3765–3770 (2014)CrossRef S.H. Al-Heniti, A. Umar, H.M. Zaki, G.N. Dar, A.A. Al-Ghamdi, S.H. Kim, Synthesis and characterizations of ferrite nanomaterials for phenyl hydrazine chemical sensor applications. J. Nanosci. Nanotechnol. 14(5), 3765–3770 (2014)CrossRef
7.
go back to reference S. Ravi, A. Karthikeyan, N. Angel Nesakumari, K.S. Pugazhvadivu, K. Tamilarasan, Magnetoresistance in silicon based ferrite magnetic tunnel junction. Curr Appl Phys 14(3), 259–263 (2014)CrossRef S. Ravi, A. Karthikeyan, N. Angel Nesakumari, K.S. Pugazhvadivu, K. Tamilarasan, Magnetoresistance in silicon based ferrite magnetic tunnel junction. Curr Appl Phys 14(3), 259–263 (2014)CrossRef
8.
go back to reference J. Panda, T.K. Nath, Investigation of junction magnetoresistance in Co0.65 Zn0.35 Fe2O4/p-Si heterostructure for spintronics, AIP Conference Proceedings. Am Inst Phys 1512(1), 1120–1121 (2013) J. Panda, T.K. Nath, Investigation of junction magnetoresistance in Co0.65 Zn0.35 Fe2O4/p-Si heterostructure for spintronics, AIP Conference Proceedings. Am Inst Phys 1512(1), 1120–1121 (2013)
9.
go back to reference M. Faham, H. Shokrollahi, G. Yousefi, S. Abbasi, PEG decorated glycine capped mn-ferrite nanoparticles synthesized by co-precipitation method for biomedical application. Adv. Mater Res. 829, 274–278 (2013)CrossRef M. Faham, H. Shokrollahi, G. Yousefi, S. Abbasi, PEG decorated glycine capped mn-ferrite nanoparticles synthesized by co-precipitation method for biomedical application. Adv. Mater Res. 829, 274–278 (2013)CrossRef
10.
go back to reference S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)CrossRef S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)CrossRef
11.
go back to reference B.K. Sunkara, R.D.K. Misra, Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 4(2), 273–283 (2008)CrossRef B.K. Sunkara, R.D.K. Misra, Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 4(2), 273–283 (2008)CrossRef
12.
go back to reference J. Rawat, S. Rana, M.M. Sorensson, R.D.K. Misra, Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles. Mater. Sci. Technol. 23(1), 97–102 (2007)CrossRef J. Rawat, S. Rana, M.M. Sorensson, R.D.K. Misra, Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles. Mater. Sci. Technol. 23(1), 97–102 (2007)CrossRef
13.
go back to reference Z. Klencsár, G. Tolnai, L. Korecz, I. Sajó, P. Németh, J. Osán, S. Mészáros, E. Kuzmann, Cation distribution and related properties of MnxZn1−xFe2O4 spinel nanoparticles. Solid State Sci. 24, 90–100 (2013)CrossRef Z. Klencsár, G. Tolnai, L. Korecz, I. Sajó, P. Németh, J. Osán, S. Mészáros, E. Kuzmann, Cation distribution and related properties of MnxZn1−xFe2O4 spinel nanoparticles. Solid State Sci. 24, 90–100 (2013)CrossRef
14.
go back to reference O. Yalçın, H. Bayrakdar, S. Özüm, Spin-flop transition, magnetic and microwave absorption properties of α-Fe2O4 spinel type ferrite nanoparticles. J. Magn. Magn. Mater. 343, 157–162 (2013)CrossRef O. Yalçın, H. Bayrakdar, S. Özüm, Spin-flop transition, magnetic and microwave absorption properties of α-Fe2O4 spinel type ferrite nanoparticles. J. Magn. Magn. Mater. 343, 157–162 (2013)CrossRef
15.
go back to reference H. Bayrakdar, O. Yalçın, S. Vural, K. Esmer, Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites. J. Magn. Magn. Mater. 343, 86–91 (2013)CrossRef H. Bayrakdar, O. Yalçın, S. Vural, K. Esmer, Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites. J. Magn. Magn. Mater. 343, 86–91 (2013)CrossRef
16.
go back to reference S.M. Peymani-Motlagh, N. Moeinian, M. Rostami, M. Fasihi-Ramandi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Eghbali-Arani, M.R. Ganjali, T. Jesionowski, H. Ehrlich, M.A. Karimi, N. Ajami, Effect of Gd3+-, Pr3+- or Sm3+-substituted cobalt–zinc ferrite on photodegradation of methyl orange and cytotoxicity tests. J. Rare Earths 37(12), 1288–1295 (2019)CrossRef S.M. Peymani-Motlagh, N. Moeinian, M. Rostami, M. Fasihi-Ramandi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Eghbali-Arani, M.R. Ganjali, T. Jesionowski, H. Ehrlich, M.A. Karimi, N. Ajami, Effect of Gd3+-, Pr3+- or Sm3+-substituted cobalt–zinc ferrite on photodegradation of methyl orange and cytotoxicity tests. J. Rare Earths 37(12), 1288–1295 (2019)CrossRef
17.
go back to reference X.L. Zhang, L.F. Liu, W.M. Liu, Quantum anomalous hall effect and tunable topological states in 3d transition metals doped silicene. Sci. Rep. 3(1), 2908 (2013)CrossRef X.L. Zhang, L.F. Liu, W.M. Liu, Quantum anomalous hall effect and tunable topological states in 3d transition metals doped silicene. Sci. Rep. 3(1), 2908 (2013)CrossRef
18.
go back to reference E. Catalano, A. Di Benedetto, Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy. J. Phys: Conf. Ser. 841(1), 1–6 (2017) E. Catalano, A. Di Benedetto, Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy. J. Phys: Conf. Ser. 841(1), 1–6 (2017)
19.
go back to reference H. Meng, Z. Zhang, F. Zhao, T. Qiu, J. Yang, Orthogonal optimization design for preparation of Fe3O4 nanoparticles via chemical coprecipitation. Appl. Surf. Sci. 280, 679–685 (2013)CrossRef H. Meng, Z. Zhang, F. Zhao, T. Qiu, J. Yang, Orthogonal optimization design for preparation of Fe3O4 nanoparticles via chemical coprecipitation. Appl. Surf. Sci. 280, 679–685 (2013)CrossRef
20.
go back to reference K. Do Kim, S.S. Kim, Y.H. Choa, H.T. Kim, Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol-gel method. J. Ind. Eng. Chem. 13(7), 1137–1141 (2007) K. Do Kim, S.S. Kim, Y.H. Choa, H.T. Kim, Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol-gel method. J. Ind. Eng. Chem. 13(7), 1137–1141 (2007)
21.
go back to reference S. Atiq, M. Javid, S. Riaz, S. Naseem, Magnetic phase transition in nickel oxide. Mater. Today 2(10), 5262–5267 (2015) S. Atiq, M. Javid, S. Riaz, S. Naseem, Magnetic phase transition in nickel oxide. Mater. Today 2(10), 5262–5267 (2015)
22.
go back to reference M. Farahmandjou, F. Soflaee, Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method. Phys. Chem. Res. 3(3), 191–196 (2015) M. Farahmandjou, F. Soflaee, Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method. Phys. Chem. Res. 3(3), 191–196 (2015)
23.
go back to reference R.T. Rasheed, S.D. Al-Algawi, H.H. Kareem, H.S. Mansoor, Preparation and characterization of hematite iron oxide (α-Fe2O3) by sol-gel method. Chem. Sci. J. 9(197), 2 (2018) R.T. Rasheed, S.D. Al-Algawi, H.H. Kareem, H.S. Mansoor, Preparation and characterization of hematite iron oxide (α-Fe2O3) by sol-gel method. Chem. Sci. J. 9(197), 2 (2018)
24.
go back to reference S. Shaker, S. Zafarian, C.H.S. Chakra, K.V. Rao, Preparation and characterization of magnetite nanoparticles by sol-gel method for water treatment. Int. J. Innov. Res. Sci. Eng. Technol. 2(7), 2969–2973 (2013) S. Shaker, S. Zafarian, C.H.S. Chakra, K.V. Rao, Preparation and characterization of magnetite nanoparticles by sol-gel method for water treatment. Int. J. Innov. Res. Sci. Eng. Technol. 2(7), 2969–2973 (2013)
25.
go back to reference M.A. Marsooli, M. Fasihi-Ramandi, K. Adib, S. Pourmasoud, F. Ahmadi, M.R. Ganjali, A. Sobhani Nasab, M. Rahimi Nasrabadi, M.E. Plonska-Brzezinska, Preparation and characterization of magnetic Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 nanoparticles and investigation of their photocatalytic and anticancer properties on PANC1 cells. Materials 12(19), 3274 (2019)CrossRef M.A. Marsooli, M. Fasihi-Ramandi, K. Adib, S. Pourmasoud, F. Ahmadi, M.R. Ganjali, A. Sobhani Nasab, M. Rahimi Nasrabadi, M.E. Plonska-Brzezinska, Preparation and characterization of magnetic Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 nanoparticles and investigation of their photocatalytic and anticancer properties on PANC1 cells. Materials 12(19), 3274 (2019)CrossRef
26.
go back to reference M.J.E.A. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, H. Gaussian 09, Revision d. 01 (Gaussian. Inc., Wallingford, CT, 2009) M.J.E.A. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, H. Gaussian 09, Revision d. 01 (Gaussian. Inc., Wallingford, CT, 2009)
27.
go back to reference J. Zyss, Molecular nonlinear optics: materials phenomena and devices, in Chemical physics. (Elsevier, Amsterdam, 1999), p. 243 J. Zyss, Molecular nonlinear optics: materials phenomena and devices, in Chemical physics. (Elsevier, Amsterdam, 1999), p. 243
28.
go back to reference S.P. Karna, Electronic and nonlinear optical materials: the role of theory and modeling. J. Phys. Chem. A 104(20), 4671–4673 (2000)CrossRef S.P. Karna, Electronic and nonlinear optical materials: the role of theory and modeling. J. Phys. Chem. A 104(20), 4671–4673 (2000)CrossRef
29.
go back to reference D.R. Kanis, M.A. Ratner, T.J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 94(1), 195–242 (1994)CrossRef D.R. Kanis, M.A. Ratner, T.J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem. Rev. 94(1), 195–242 (1994)CrossRef
30.
go back to reference J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and 399 Applications (Elsevier, Amsterdam, 1996) J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and 399 Applications (Elsevier, Amsterdam, 1996)
31.
go back to reference E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials, in Advances in quantum chemistry. (Academic Press, Cambridge, 1978), pp. 115–193 E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials, in Advances in quantum chemistry. (Academic Press, Cambridge, 1978), pp. 115–193
Metadata
Title
Synthesis, characterizations and quantum chemical calculations of the spinel structure of Fe3O4 nanoparticles
Authors
C. Rajeevgandhi
S. Bharanidharan
S. Savithiri
L. Guganathan
P. Sugumar
K. Sathiyamurthy
K. Mohan
Publication date
26-10-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04656-1

Other articles of this Issue 23/2020

Journal of Materials Science: Materials in Electronics 23/2020 Go to the issue