Skip to main content
Top

2017 | OriginalPaper | Chapter

Proton-Conducting Electrolytes for Solid Oxide Fuel Cell Applications

Authors : Dmitry Medvedev, Angeliki Brouzgou, Anatoly Demin, Panagiotis Tsiakaras

Published in: Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The necessity for reducing the operating temperatures of solid oxide fuel cells (SOFCs) below 800 °C is widely proposed in the last years. To this aim, proton-conducting oxides have gained widespread interest as the electrolyte materials, acting as an alternative to oxygen ion conductors. High-temperature proton conductors, owing to their lower activation energy for proton conduction, can achieve high conductivity at relatively low temperatures compared to their oxygen ion-conducting counterparts. In this chapter, the recent advances in the field of solid oxide proton-conducting materials that belong to the class of perovskite-based materials (such as doped BaCeO3, BaZrO3, BaCeO3–BaZrO3 SrCeO3, and LaScO3) and to other classes of materials (such as doped Ba2In2O5, CeO2, and LaNbO4) are presented and analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amsif, M., Marrero-Lopez, D., Ruiz-Morales, J., Savvin, S., Gabás, M., & Nunez, P. (2011). Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3−δ proton conductors. Journal of Power Sources, 196, 3461–3469.CrossRef Amsif, M., Marrero-Lopez, D., Ruiz-Morales, J., Savvin, S., Gabás, M., & Nunez, P. (2011). Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3−δ proton conductors. Journal of Power Sources, 196, 3461–3469.CrossRef
go back to reference Amsif, M., Marrero-López, D., Ruiz-Morales, J. C., Savvin, S. N., & Núñez, P. (2014). The effect of Zn addition on the structure and transport properties of BaCe0.9−xZrxY0.1O3−δ. Journal of the European Ceramic Society, 34, 1553–1562.CrossRef Amsif, M., Marrero-López, D., Ruiz-Morales, J. C., Savvin, S. N., & Núñez, P. (2014). The effect of Zn addition on the structure and transport properties of BaCe0.9−xZrxY0.1O3−δ. Journal of the European Ceramic Society, 34, 1553–1562.CrossRef
go back to reference Andersson, A. K., Selbach, S. M., Knee, C. S., & Grande, T. (2014). Chemical Expansion Due to Hydration of Proton-Conducting Perovskite Oxide Ceramics. Journal of the American Ceramic Society, 97, 2654–2661.CrossRef Andersson, A. K., Selbach, S. M., Knee, C. S., & Grande, T. (2014). Chemical Expansion Due to Hydration of Proton-Conducting Perovskite Oxide Ceramics. Journal of the American Ceramic Society, 97, 2654–2661.CrossRef
go back to reference Animitsa, I., Tarasova, N., & Filinkova, Y. (2012). Electrical properties of the fluorine-doped Ba2In2O5. Solid State Ionics, 207, 29–37.CrossRef Animitsa, I., Tarasova, N., & Filinkova, Y. (2012). Electrical properties of the fluorine-doped Ba2In2O5. Solid State Ionics, 207, 29–37.CrossRef
go back to reference Babilo, P., Uda, T., & Haile, S. M. (2007). Processing of yttrium-doped barium zirconate for high proton conductivity. Journal of Materials Research, 22, 1322–1330.CrossRef Babilo, P., Uda, T., & Haile, S. M. (2007). Processing of yttrium-doped barium zirconate for high proton conductivity. Journal of Materials Research, 22, 1322–1330.CrossRef
go back to reference Bae, H., & Choi, G. M. (2015). Novel modification of anode microstructure for proton-conducting solid oxide fuel cells with BaZr0.8Y0.2O3−δ electrolytes. Journal of Power Sources, 285, 431–438.CrossRef Bae, H., & Choi, G. M. (2015). Novel modification of anode microstructure for proton-conducting solid oxide fuel cells with BaZr0.8Y0.2O3−δ electrolytes. Journal of Power Sources, 285, 431–438.CrossRef
go back to reference Bannykh, A., & Kuzin, B. (2003). Electrical conductivity of BaCe0.9Nd0.1O3−α in H2 + H2O + Ar gas mixture. Ionics, 9, 134–139.CrossRef Bannykh, A., & Kuzin, B. (2003). Electrical conductivity of BaCe0.9Nd0.1O3−α in H2 + H2O + Ar gas mixture. Ionics, 9, 134–139.CrossRef
go back to reference Bi, L., Fabbri, E., Sun, Z., & Traversa, E. (2011). Sinteractivity, proton conductivity and chemical stability of BaZr0.7In0.3O3−δ for solid oxide fuel cells (SOFCs). Solid State Ionics, 196, 59–64.CrossRef Bi, L., Fabbri, E., Sun, Z., & Traversa, E. (2011). Sinteractivity, proton conductivity and chemical stability of BaZr0.7In0.3O3−δ for solid oxide fuel cells (SOFCs). Solid State Ionics, 196, 59–64.CrossRef
go back to reference Bi, L., Fang, S., Tao, Z., Zhang, S., Peng, R., & Liu, W. (2009a). Influence of anode pore forming additives on the densification of supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membranes based on a solid state reaction. Journal of the European Ceramic Society, 29, 2567–2573.CrossRef Bi, L., Fang, S., Tao, Z., Zhang, S., Peng, R., & Liu, W. (2009a). Influence of anode pore forming additives on the densification of supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membranes based on a solid state reaction. Journal of the European Ceramic Society, 29, 2567–2573.CrossRef
go back to reference Bi, L., & Traversa, E. (2014). Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications. Journal of Materials Research, 29, 1–15.CrossRef Bi, L., & Traversa, E. (2014). Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications. Journal of Materials Research, 29, 1–15.CrossRef
go back to reference Bi, L., Zhang, S., Zhang, L., Tao, Z., Wang, H., & Liu, W. (2009). Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell. International Journal of Hydrogen Energy, 34, 2421–2425.CrossRef Bi, L., Zhang, S., Zhang, L., Tao, Z., Wang, H., & Liu, W. (2009). Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell. International Journal of Hydrogen Energy, 34, 2421–2425.CrossRef
go back to reference Bi, Z., Pena-Martinez, J., Kim, J.-H., Bridges, C. A., Huq, A., Hodges, J. P., et al. (2012). Effect of Ca doping on the electrical conductivity of the high temperature proton conductor LaNbO4. International Journal of Hydrogen Energy, 37, 12751–12759.CrossRef Bi, Z., Pena-Martinez, J., Kim, J.-H., Bridges, C. A., Huq, A., Hodges, J. P., et al. (2012). Effect of Ca doping on the electrical conductivity of the high temperature proton conductor LaNbO4. International Journal of Hydrogen Energy, 37, 12751–12759.CrossRef
go back to reference Bishop, S., Duncan, K., & Wachsman, E. (2009). Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Materialia, 57, 3596–3605.CrossRef Bishop, S., Duncan, K., & Wachsman, E. (2009). Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Materialia, 57, 3596–3605.CrossRef
go back to reference Bishop, S., Marrocchelli, D., Chatzichristodoulou, C., Perry, N., Mogensen, M. B., Tuller, H., et al. (2014). Chemical expansion: Implications for electrochemical energy storage and conversion devices. Annual Review of Materials Research, 44, 205–239.CrossRef Bishop, S., Marrocchelli, D., Chatzichristodoulou, C., Perry, N., Mogensen, M. B., Tuller, H., et al. (2014). Chemical expansion: Implications for electrochemical energy storage and conversion devices. Annual Review of Materials Research, 44, 205–239.CrossRef
go back to reference Bonanos, N., Ellis, B., Knight, K., & Mahmood, M. (1989). Ionic conductivity of gadolinium-doped barium cerate perovskites. Solid State Ionics, 35, 179–188.CrossRef Bonanos, N., Ellis, B., Knight, K., & Mahmood, M. (1989). Ionic conductivity of gadolinium-doped barium cerate perovskites. Solid State Ionics, 35, 179–188.CrossRef
go back to reference Bonanos, N., & Poulsen, F. W. (1999). Considerations of defect equilibria in high temperature proton-conducting cerates. Journal of Materials Chemistry, 9, 431–434.CrossRef Bonanos, N., & Poulsen, F. W. (1999). Considerations of defect equilibria in high temperature proton-conducting cerates. Journal of Materials Chemistry, 9, 431–434.CrossRef
go back to reference Brandao, A., Gracio, J., Mather, G., Kharton, V., & Fagg, D. (2011). B-site substitutions in LaNb1−xMxO4−δ materials in the search for potential proton conductors (M = Ga, Ge, Si, B, Ti, Zr, P, Al). Journal of Solid State Chemistry, 184, 863–870.CrossRef Brandao, A., Gracio, J., Mather, G., Kharton, V., & Fagg, D. (2011). B-site substitutions in LaNb1−xMxO4−δ materials in the search for potential proton conductors (M = Ga, Ge, Si, B, Ti, Zr, P, Al). Journal of Solid State Chemistry, 184, 863–870.CrossRef
go back to reference Cervera, R. B., Oyama, Y., Miyoshi, S., Kobayashi, K., Yagi, T., & Yamaguchi, S. (2008). Structural study and proton transport of bulk nanograined Y-doped BaZrO3 oxide protonics materials. Solid State Ionics, 179, 236–242.CrossRef Cervera, R. B., Oyama, Y., Miyoshi, S., Kobayashi, K., Yagi, T., & Yamaguchi, S. (2008). Structural study and proton transport of bulk nanograined Y-doped BaZrO3 oxide protonics materials. Solid State Ionics, 179, 236–242.CrossRef
go back to reference Chandra, S. (1984). Fast proton transport in solids. Materials Science Forum. Trans Tech Publ, 153–169. Chandra, S. (1984). Fast proton transport in solids. Materials Science Forum. Trans Tech Publ, 153–169.
go back to reference Chi, X., Zhang, J., Wen, Z., Liu, Y., Wu, M., & Wu, X. (2013a). Influence of In doping on the structure, stability and electrical conduction behavior of Ba (Ce, Ti)O3 solid solution. Journal of Alloys and Compounds, 554, 378–384.CrossRef Chi, X., Zhang, J., Wen, Z., Liu, Y., Wu, M., & Wu, X. (2013a). Influence of In doping on the structure, stability and electrical conduction behavior of Ba (Ce, Ti)O3 solid solution. Journal of Alloys and Compounds, 554, 378–384.CrossRef
go back to reference Chi, X., Zhang, J., Wu, M., Liu, Y., & Wen, Z. (2013b). Study on stability and electrical performance of yttrium and bismuth co-doped BaCeO3. Ceramics International, 39, 4899–4906.CrossRef Chi, X., Zhang, J., Wu, M., Liu, Y., & Wen, Z. (2013b). Study on stability and electrical performance of yttrium and bismuth co-doped BaCeO3. Ceramics International, 39, 4899–4906.CrossRef
go back to reference Choi, S. M., Lee, J.-H., Hong, J., Kim, H., Yoon, K. J., Kim, B.-K., et al. (2014). Effect of sintering atmosphere on phase stability, and electrical conductivity of proton-conducting Ba (Zr0.84Y0.15Cu0.01)O3−δ. International Journal of Hydrogen Energy, 39, 7100–7108.CrossRef Choi, S. M., Lee, J.-H., Hong, J., Kim, H., Yoon, K. J., Kim, B.-K., et al. (2014). Effect of sintering atmosphere on phase stability, and electrical conductivity of proton-conducting Ba (Zr0.84Y0.15Cu0.01)O3−δ. International Journal of Hydrogen Energy, 39, 7100–7108.CrossRef
go back to reference Dahl, P. I., Lein, H. L., Yu, Y., Tolchard, J., Grande, T., Einarsrud, M.-A., et al. (2011). Microstructural characterization and electrical properties of spray pyrolyzed conventionally sintered or hot-pressed BaZrO3 and BaZr0.9 Y0.1O3−δ. Solid State Ionics, 182, 32–40.CrossRef Dahl, P. I., Lein, H. L., Yu, Y., Tolchard, J., Grande, T., Einarsrud, M.-A., et al. (2011). Microstructural characterization and electrical properties of spray pyrolyzed conventionally sintered or hot-pressed BaZrO3 and BaZr0.9 Y0.1O3−δ. Solid State Ionics, 182, 32–40.CrossRef
go back to reference Demin, A., & Tsiakaras, P. (2001). Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor. International Journal of Hydrogen Energy, 26, 1103–1108.CrossRef Demin, A., & Tsiakaras, P. (2001). Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor. International Journal of Hydrogen Energy, 26, 1103–1108.CrossRef
go back to reference Demin, A., Tsiakaras, P., Gorbova, E., & Hramova, S. (2004). A SOFC based on a co-ionic electrolyte. Journal of Power Sources, 131, 231–236.CrossRef Demin, A., Tsiakaras, P., Gorbova, E., & Hramova, S. (2004). A SOFC based on a co-ionic electrolyte. Journal of Power Sources, 131, 231–236.CrossRef
go back to reference Duval, S., Holtappels, P., Vogt, U., Pomjakushina, E., Conder, K., Stimming, U., et al. (2007). Electrical conductivity of the proton conductor BaZr0.9Y0.1O3−δ obtained by high temperature annealing. Solid State Ionics, 178, 1437–1441.CrossRef Duval, S., Holtappels, P., Vogt, U., Pomjakushina, E., Conder, K., Stimming, U., et al. (2007). Electrical conductivity of the proton conductor BaZr0.9Y0.1O3−δ obtained by high temperature annealing. Solid State Ionics, 178, 1437–1441.CrossRef
go back to reference Eurenius, K., Ahlberg, E., Ahmed, I., Eriksson, S. G., & Knee, C. S. (2010a). Investigation of proton conductivity in Sm1.92Ca0.08Ti2O7−δ and Sm2Ti1.92Y0.08O7−δ pyrochlores. Solid State Ionics, 181, 148–153.CrossRef Eurenius, K., Ahlberg, E., Ahmed, I., Eriksson, S. G., & Knee, C. S. (2010a). Investigation of proton conductivity in Sm1.92Ca0.08Ti2O7−δ and Sm2Ti1.92Y0.08O7−δ pyrochlores. Solid State Ionics, 181, 148–153.CrossRef
go back to reference Eurenius, K., Ahlberg, E., & Knee, C. (2010b). Proton conductivity in Ln1.96Ca0.04Sn2O7-δ (Ln = La, Sm, Yb) pyrochlores as a function of the lanthanide size. Solid State Ionics, 181, 1258–1263.CrossRef Eurenius, K., Ahlberg, E., & Knee, C. (2010b). Proton conductivity in Ln1.96Ca0.04Sn2O7-δ (Ln = La, Sm, Yb) pyrochlores as a function of the lanthanide size. Solid State Ionics, 181, 1258–1263.CrossRef
go back to reference Eurenius, K., Ahlberg, E., & Knee, C. (2010c). Proton conductivity in Sm2Sn2O7 pyrochlores. Solid State Ionics, 181, 1577–1585.CrossRef Eurenius, K., Ahlberg, E., & Knee, C. (2010c). Proton conductivity in Sm2Sn2O7 pyrochlores. Solid State Ionics, 181, 1577–1585.CrossRef
go back to reference Fabbri, E., Bi, L., Tanaka, H., Pergolesi, D., & Traversa, E. (2011). Chemically stable Pr and Y Co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Advanced Functional Materials, 21, 158–166.CrossRef Fabbri, E., Bi, L., Tanaka, H., Pergolesi, D., & Traversa, E. (2011). Chemically stable Pr and Y Co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Advanced Functional Materials, 21, 158–166.CrossRef
go back to reference Fabbri, E., D’Epifanio, A., Di Bartolomeo, E., Licoccia, S., & Traversa, E. (2008). Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics, 179, 558–564.CrossRef Fabbri, E., D’Epifanio, A., Di Bartolomeo, E., Licoccia, S., & Traversa, E. (2008). Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics, 179, 558–564.CrossRef
go back to reference Fang, S., Bi, L., Wu, X., Gao, H., Chen, C., & Liu, W. (2008). Chemical stability and hydrogen permeation performance of Ni–BaZr0.1Ce0.7Y0.2O3−δ in an H2S-containing atmosphere. Journal of Power Sources, 183, 126–132.CrossRef Fang, S., Bi, L., Wu, X., Gao, H., Chen, C., & Liu, W. (2008). Chemical stability and hydrogen permeation performance of Ni–BaZr0.1Ce0.7Y0.2O3−δ in an H2S-containing atmosphere. Journal of Power Sources, 183, 126–132.CrossRef
go back to reference Figueiredo, F., & Marques, F. (2013). Electrolytes for solid oxide fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2, 52–72.CrossRef Figueiredo, F., & Marques, F. (2013). Electrolytes for solid oxide fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2, 52–72.CrossRef
go back to reference Fisher, J. G., Kim, D.-H., Lee, S., Nguyen, D., & Lee, J.-S. (2013). Reactive sintering of BaY0.1Zr0.9O3−δ proton conducting ceramics with CuO liquid phase sintering aid. Journal of Ceramic Processing Research, 14, 703–706. Fisher, J. G., Kim, D.-H., Lee, S., Nguyen, D., & Lee, J.-S. (2013). Reactive sintering of BaY0.1Zr0.9O3−δ proton conducting ceramics with CuO liquid phase sintering aid. Journal of Ceramic Processing Research, 14, 703–706.
go back to reference Gao, D., & Guo, R. (2010). Structural and electrochemical properties of yttrium-doped barium zirconate by addition of CuO. Journal of Alloys and Compounds, 493, 288–293.CrossRef Gao, D., & Guo, R. (2010). Structural and electrochemical properties of yttrium-doped barium zirconate by addition of CuO. Journal of Alloys and Compounds, 493, 288–293.CrossRef
go back to reference Gorbova, E., Maragou, V., Medvedev, D., Demin, A., & Tsiakaras, P. (2008). Investigation of the protonic conduction in Sm doped BaCeO3. Journal of Power Sources, 181, 207–213.CrossRef Gorbova, E., Maragou, V., Medvedev, D., Demin, A., & Tsiakaras, P. (2008). Investigation of the protonic conduction in Sm doped BaCeO3. Journal of Power Sources, 181, 207–213.CrossRef
go back to reference Gorelov, V., & Balakireva, V. (2009). Synthesis and properties of high-density protonic solid electrolyte BaZr0.9Y0.1O3−α. Russian Journal of Electrochemistry, 45, 476–482.CrossRef Gorelov, V., & Balakireva, V. (2009). Synthesis and properties of high-density protonic solid electrolyte BaZr0.9Y0.1O3−α. Russian Journal of Electrochemistry, 45, 476–482.CrossRef
go back to reference Gorelov, V., Balakireva, V., Kuz’min, A., & Plaksin, S. (2014). Electrical conductivity of CaZr1−x (x = 0.01–0.20) in dry and humid air. Inorganic Materials, 50, 495–502.CrossRef Gorelov, V., Balakireva, V., Kuz’min, A., & Plaksin, S. (2014). Electrical conductivity of CaZr1−x (x = 0.01–0.20) in dry and humid air. Inorganic Materials, 50, 495–502.CrossRef
go back to reference Goupil, G., Delahaye, T., Gauthier, G., Sala, B., & Joud, F. L. (2012). Stability study of possible air electrode materials for proton conducting electrochemical cells. Solid State Ionics, 209, 36–42.CrossRef Goupil, G., Delahaye, T., Gauthier, G., Sala, B., & Joud, F. L. (2012). Stability study of possible air electrode materials for proton conducting electrochemical cells. Solid State Ionics, 209, 36–42.CrossRef
go back to reference Guo, Y., Lin, Y., Ran, R., & Shao, Z. (2009). Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications. Journal of Power Sources, 193, 400–407.CrossRef Guo, Y., Lin, Y., Ran, R., & Shao, Z. (2009). Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications. Journal of Power Sources, 193, 400–407.CrossRef
go back to reference Haile, S., Staneff, G., & Ryu, K. (2001). Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. Journal of Materials Science, 36, 1149–1160.CrossRef Haile, S., Staneff, G., & Ryu, K. (2001). Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. Journal of Materials Science, 36, 1149–1160.CrossRef
go back to reference Han, D., Shinoda, K., & Uda, T. (2014). Dopant site occupancy and chemical expansion in rare earth-doped barium zirconate. Journal of the American Ceramic Society, 97, 643–650.CrossRef Han, D., Shinoda, K., & Uda, T. (2014). Dopant site occupancy and chemical expansion in rare earth-doped barium zirconate. Journal of the American Ceramic Society, 97, 643–650.CrossRef
go back to reference Hashimoto, T., Ueda, Y., Yoshinaga, M., Komazaki, K., Asaoka, K., & Wang, S. (2002). Observation of two kinds of structural phase transitions in the Ba2In2O5 system. Journal of the Electrochemical Society, 149, A1381–A1384.CrossRef Hashimoto, T., Ueda, Y., Yoshinaga, M., Komazaki, K., Asaoka, K., & Wang, S. (2002). Observation of two kinds of structural phase transitions in the Ba2In2O5 system. Journal of the Electrochemical Society, 149, A1381–A1384.CrossRef
go back to reference Haugsrud, R., & Norby, T. (2006). High-temperature proton conductivity in acceptor-doped LaNbO4. Solid State Ionics, 177, 1129–1135.CrossRef Haugsrud, R., & Norby, T. (2006). High-temperature proton conductivity in acceptor-doped LaNbO4. Solid State Ionics, 177, 1129–1135.CrossRef
go back to reference Hibino, T., Mizutani, K., Yajima, T., & Iwahara, H. (1992). Characterization of proton in Y-doped SrZrO 3 polycrystal by IR spectroscopy. Solid State Ionics, 58, 85–88.CrossRef Hibino, T., Mizutani, K., Yajima, T., & Iwahara, H. (1992). Characterization of proton in Y-doped SrZrO 3 polycrystal by IR spectroscopy. Solid State Ionics, 58, 85–88.CrossRef
go back to reference Hiraiwa, C., Han, D., Kuramitsu, A., Kuwabara, A., Takeuchi, H., Majima, M., et al. (2013). Chemical expansion and change in lattice constant of Y-doped BaZrO3 by hydration/dehydration reaction and final heat-treating temperature. Journal of the American Ceramic Society, 96, 879–884.CrossRef Hiraiwa, C., Han, D., Kuramitsu, A., Kuwabara, A., Takeuchi, H., Majima, M., et al. (2013). Chemical expansion and change in lattice constant of Y-doped BaZrO3 by hydration/dehydration reaction and final heat-treating temperature. Journal of the American Ceramic Society, 96, 879–884.CrossRef
go back to reference Huang, P.-N., & Petric, A. (1995). Electrical conduction of yttrium-doped strontium zirconate. Journal of Materials Chemistry, 5, 53–56.CrossRef Huang, P.-N., & Petric, A. (1995). Electrical conduction of yttrium-doped strontium zirconate. Journal of Materials Chemistry, 5, 53–56.CrossRef
go back to reference Hui, R., Maric, R., Deces-Petit, C., Styles, E., Qu, W., Zhang, X., et al. (2006). Proton conduction in ceria-doped Ba2In2O5 nanocrystalline ceramic at low temperature. Journal of Power Sources, 161, 40–46.CrossRef Hui, R., Maric, R., Deces-Petit, C., Styles, E., Qu, W., Zhang, X., et al. (2006). Proton conduction in ceria-doped Ba2In2O5 nanocrystalline ceramic at low temperature. Journal of Power Sources, 161, 40–46.CrossRef
go back to reference Huse, M., Norby, T., & Haugsrud, R. (2012). Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO4. International Journal of Hydrogen Energy, 37, 8004–8016.CrossRef Huse, M., Norby, T., & Haugsrud, R. (2012). Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO4. International Journal of Hydrogen Energy, 37, 8004–8016.CrossRef
go back to reference Islam, M., Davies, R., Fisher, C., & Chadwick, A. (2001). Defects and protons in the CaZrO 3 perovskite and Ba2In2O5 brownmillerite: Computer modelling and EXAFS studies. Solid State Ionics, 145, 333–338.CrossRef Islam, M., Davies, R., Fisher, C., & Chadwick, A. (2001). Defects and protons in the CaZrO 3 perovskite and Ba2In2O5 brownmillerite: Computer modelling and EXAFS studies. Solid State Ionics, 145, 333–338.CrossRef
go back to reference Ito, S., Watanabe, M., Saito, M., & Yamamura, H. (2012). Electrical properties of new brounmillerite-type Ba2In2−x(Zn, Zr)xO5 system. Procedia Engineering, 36, 68–73.CrossRef Ito, S., Watanabe, M., Saito, M., & Yamamura, H. (2012). Electrical properties of new brounmillerite-type Ba2In2−x(Zn, Zr)xO5 system. Procedia Engineering, 36, 68–73.CrossRef
go back to reference Ivanova, M. E., Meulenberg, W. A., Palisaitis, J., Sebold, D., Solís, C., Ziegner, M., et al. (2015). Functional properties of La0.99X0.01Nb0.99Al0.01O4−δ and La0.99X0.01Nb0.99Ti0.01O4−δ proton conductors where X is an alkaline earth cation. Journal of the European Ceramic Society, 35, 1239–1253.CrossRef Ivanova, M. E., Meulenberg, W. A., Palisaitis, J., Sebold, D., Solís, C., Ziegner, M., et al. (2015). Functional properties of La0.99X0.01Nb0.99Al0.01O4−δ and La0.99X0.01Nb0.99Ti0.01O4−δ proton conductors where X is an alkaline earth cation. Journal of the European Ceramic Society, 35, 1239–1253.CrossRef
go back to reference Iwahara, H., Esaka, T., Uchida, H., & Maeda, N. (1981). Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics, 3, 359–363.CrossRef Iwahara, H., Esaka, T., Uchida, H., & Maeda, N. (1981). Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics, 3, 359–363.CrossRef
go back to reference Iwahara, H., Uchida, H., & Maeda, N. (1982). High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. Journal of Power Sources, 7, 293–301.CrossRef Iwahara, H., Uchida, H., & Maeda, N. (1982). High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. Journal of Power Sources, 7, 293–301.CrossRef
go back to reference Iwahara, H., Uchida, H., & Tanaka, S. (1983). High temperature type proton conductor based on SrCeO3 and its application to solid electrolyte fuel cells. Solid State Ionics, 9, 1021–1025.CrossRef Iwahara, H., Uchida, H., & Tanaka, S. (1983). High temperature type proton conductor based on SrCeO3 and its application to solid electrolyte fuel cells. Solid State Ionics, 9, 1021–1025.CrossRef
go back to reference Jankovic, J., Wilkinson, D. P., & Hui, R. (2012). Preparation and characterization of Ce-and La-doped Ba2In2O5 as candidates for intermediate temperature (100–500 °C) solid proton conductors. Journal of Power Sources, 201, 49–58.CrossRef Jankovic, J., Wilkinson, D. P., & Hui, R. (2012). Preparation and characterization of Ce-and La-doped Ba2In2O5 as candidates for intermediate temperature (100–500 °C) solid proton conductors. Journal of Power Sources, 201, 49–58.CrossRef
go back to reference Kakinuma, K., Yamamura, H., Haneda, H., & Atake, T. (2001). Oxide-ion conductivity of (Ba1−xLax)2In2O5+ x system based on brownmillerite structure. Solid State Ionics, 140, 301–306.CrossRef Kakinuma, K., Yamamura, H., Haneda, H., & Atake, T. (2001). Oxide-ion conductivity of (Ba1−xLax)2In2O5+ x system based on brownmillerite structure. Solid State Ionics, 140, 301–306.CrossRef
go back to reference Kalyakin, A., Lyagaeva, J., Medvedev, D., Volkov, A., Demin, A., & Tsiakaras, P. (2016). Characterization of proton-conducting electrolyte based on La0.9Sr0.1YO3−δ and its application in a hydrogen amperometric sensor. Sensors and Actuators B: Chemical, 225, 446–452.CrossRef Kalyakin, A., Lyagaeva, J., Medvedev, D., Volkov, A., Demin, A., & Tsiakaras, P. (2016). Characterization of proton-conducting electrolyte based on La0.9Sr0.1YO3−δ and its application in a hydrogen amperometric sensor. Sensors and Actuators B: Chemical, 225, 446–452.CrossRef
go back to reference Katahira, K., Kohchi, Y., Shimura, T., & Iwahara, H. (2000). Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics, 138, 91–98.CrossRef Katahira, K., Kohchi, Y., Shimura, T., & Iwahara, H. (2000). Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics, 138, 91–98.CrossRef
go back to reference Kochetova, N., Spesivtseva, I., & Animitsa, I. (2013). Electrical properties of Ba2(In1−xAlx)2O5 solid solutions. Russian Journal of Electrochemistry, 49, 176–180.CrossRef Kochetova, N., Spesivtseva, I., & Animitsa, I. (2013). Electrical properties of Ba2(In1−xAlx)2O5 solid solutions. Russian Journal of Electrochemistry, 49, 176–180.CrossRef
go back to reference Kochetova, N., Animitsa, I., Medvedev, D., Demin, A., & Tsiakaras, P. (2016). Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Advances, 6, 73222–73268. Kochetova, N., Animitsa, I., Medvedev, D., Demin, A., & Tsiakaras, P. (2016). Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Advances, 6, 73222–73268.
go back to reference Kreuer, K.-D. (1996). Proton conductivity: Materials and applications. Chemistry of Materials, 8, 610–641.CrossRef Kreuer, K.-D. (1996). Proton conductivity: Materials and applications. Chemistry of Materials, 8, 610–641.CrossRef
go back to reference Kreuer, K.-D., Fuchs, A., & Maier, J. (1995). HD isotope effect of proton conductivity and proton conduction mechanism in oxides. Solid State Ionics, 77, 157–162.CrossRef Kreuer, K.-D., Fuchs, A., & Maier, J. (1995). HD isotope effect of proton conductivity and proton conduction mechanism in oxides. Solid State Ionics, 77, 157–162.CrossRef
go back to reference Kreuer, K.-D., Münch, W., Fuchs, A., Klock, U., & Maier, J. (2001). Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics, 145, 295–306.CrossRef Kreuer, K.-D., Münch, W., Fuchs, A., Klock, U., & Maier, J. (2001). Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics, 145, 295–306.CrossRef
go back to reference Kreuer, K. (1997). On the development of proton conducting materials for technological applications. Solid State Ionics, 97, 1–15.CrossRef Kreuer, K. (1997). On the development of proton conducting materials for technological applications. Solid State Ionics, 97, 1–15.CrossRef
go back to reference Kreuer, K. (1999). Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics, 125, 285–302.CrossRef Kreuer, K. (1999). Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics, 125, 285–302.CrossRef
go back to reference Kreuer, K. (2003). Proton-conducting oxides. Annual Review of Materials Research, 33, 333–359.CrossRef Kreuer, K. (2003). Proton-conducting oxides. Annual Review of Materials Research, 33, 333–359.CrossRef
go back to reference Kröger, F. A. (1964). The chemistry of imperfect crystals. Amsterdam: North-Holland Publishing Company. Kröger, F. A. (1964). The chemistry of imperfect crystals. Amsterdam: North-Holland Publishing Company.
go back to reference Krug, F., & Schober, T. (1996). The high-temperature proton conductor Ba3(Ca1.18Nb1.82)O9 − gd: Thermogravimetry of the water uptake. Solid State Ionics, 92, 297–302.CrossRef Krug, F., & Schober, T. (1996). The high-temperature proton conductor Ba3(Ca1.18Nb1.82)O9 − gd: Thermogravimetry of the water uptake. Solid State Ionics, 92, 297–302.CrossRef
go back to reference Kuzin, B., Beresnev, S., Bannykh, A., & Perfil’yev, M. (2000). Transport numbers of H+ and O2-in the electrochemical system (H2 + H2O), Me/BaCe0.9Nd0.1O3-α/Me,(H2 + H2O). Russian Journal of Electrochemistry, 36, 424–430.CrossRef Kuzin, B., Beresnev, S., Bannykh, A., & Perfil’yev, M. (2000). Transport numbers of H+ and O2-in the electrochemical system (H2 + H2O), Me/BaCe0.9Nd0.1O3-α/Me,(H2 + H2O). Russian Journal of Electrochemistry, 36, 424–430.CrossRef
go back to reference Kuzmin, A., Balakireva, V., Plaksin, S., & Gorelov, V. (2009). Total and hole conductivity in the BaZr1−xYxO3−α system (x = 0.02 − 0.20) in oxidizing atmosphere. Russian Journal of Electrochemistry, 45, 1351–1357.CrossRef Kuzmin, A., Balakireva, V., Plaksin, S., & Gorelov, V. (2009). Total and hole conductivity in the BaZr1−xYxO3−α system (x = 0.02 − 0.20) in oxidizing atmosphere. Russian Journal of Electrochemistry, 45, 1351–1357.CrossRef
go back to reference Lagaeva, J., Medvedev, D., Demin, A., & Tsiakaras, P. (2015). Insights on thermal and transport features of BaCe0.8−xZrxY0.2O3−δ proton-conducting materials. Journal of Power Sources, 278, 436–444.CrossRef Lagaeva, J., Medvedev, D., Demin, A., & Tsiakaras, P. (2015). Insights on thermal and transport features of BaCe0.8−xZrxY0.2O3−δ proton-conducting materials. Journal of Power Sources, 278, 436–444.CrossRef
go back to reference Li, J., Luo, J.-L., Chuang, K. T., & Sanger, A. R. (2008). Chemical stability of Y-doped Ba (Ce, Zr)O3 perovskites in H2S-containing H2. Electrochimica Acta, 53, 3701–3707.CrossRef Li, J., Luo, J.-L., Chuang, K. T., & Sanger, A. R. (2008). Chemical stability of Y-doped Ba (Ce, Zr)O3 perovskites in H2S-containing H2. Electrochimica Acta, 53, 3701–3707.CrossRef
go back to reference Li, J., Yoon, H., & Wachsman, E. D. (2011). Hydrogen permeation through thin supported SrCe0.7Zr0.2Eu0.1O3−δ membranes; dependence of flux on defect equilibria and operating conditions. Journal of Membrane Science, 381, 126–131.CrossRef Li, J., Yoon, H., & Wachsman, E. D. (2011). Hydrogen permeation through thin supported SrCe0.7Zr0.2Eu0.1O3−δ membranes; dependence of flux on defect equilibria and operating conditions. Journal of Membrane Science, 381, 126–131.CrossRef
go back to reference Lim, D.-K., Choi, M.-B., Lee, K.-T., Yoon, H.-S., Wachsman, E., & Song, S.-J. (2011). Non-monotonic conductivity relaxation of proton-conducting BaCe0.85Y0.15O3−δ upon hydration and dehydration. International Journal of Hydrogen Energy, 36, 9367–9373.CrossRef Lim, D.-K., Choi, M.-B., Lee, K.-T., Yoon, H.-S., Wachsman, E., & Song, S.-J. (2011). Non-monotonic conductivity relaxation of proton-conducting BaCe0.85Y0.15O3−δ upon hydration and dehydration. International Journal of Hydrogen Energy, 36, 9367–9373.CrossRef
go back to reference Lin, B., Zhang, S., Zhang, L., Bi, L., Ding, H., Liu, X., et al. (2008). Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray. Journal of Power Sources, 177, 330–333.CrossRef Lin, B., Zhang, S., Zhang, L., Bi, L., Ding, H., Liu, X., et al. (2008). Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray. Journal of Power Sources, 177, 330–333.CrossRef
go back to reference Liu, X.-M., Liu, Z.-G., Ouyang, J.-H., Gu, Y.-J., Xiang, J., & Yan, F.-Y. (2012). Structure and electrical conductivity of BaCe0.7In0.1A0.2O3−δ(A = Gd, Y) ceramics. Electrochimica Acta, 59, 464–469.CrossRef Liu, X.-M., Liu, Z.-G., Ouyang, J.-H., Gu, Y.-J., Xiang, J., & Yan, F.-Y. (2012). Structure and electrical conductivity of BaCe0.7In0.1A0.2O3−δ(A = Gd, Y) ceramics. Electrochimica Acta, 59, 464–469.CrossRef
go back to reference Lyagaeva, Y. G., Medvedev, D., Demin, A., Tsiakaras, P., & Reznitskikh, O. (2015). Thermal expansion of materials in the barium cerate-zirconate system. Physics of the Solid State, 57, 285–289.CrossRef Lyagaeva, Y. G., Medvedev, D., Demin, A., Tsiakaras, P., & Reznitskikh, O. (2015). Thermal expansion of materials in the barium cerate-zirconate system. Physics of the Solid State, 57, 285–289.CrossRef
go back to reference Lybye, D., Poulsen, F. W., & Mogensen, M. (2000). Conductivity of A-and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites. Solid State Ionics, 128, 91–103.CrossRef Lybye, D., Poulsen, F. W., & Mogensen, M. (2000). Conductivity of A-and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites. Solid State Ionics, 128, 91–103.CrossRef
go back to reference Münch, W., Seifert, G., Kreuer, K., & Maier, J. (1996). A quantum molecular dynamics study of proton conduction phenomena in BaCeO 3. Solid State Ionics, 86, 647–652.CrossRef Münch, W., Seifert, G., Kreuer, K., & Maier, J. (1996). A quantum molecular dynamics study of proton conduction phenomena in BaCeO 3. Solid State Ionics, 86, 647–652.CrossRef
go back to reference Ma, G., Shimura, T., & Iwahara, H. (1998). Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3−α. Solid State Ionics, 110, 103–110.CrossRef Ma, G., Shimura, T., & Iwahara, H. (1998). Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3−α. Solid State Ionics, 110, 103–110.CrossRef
go back to reference Magrasó, A., Fontaine, M.-L., Bredesen, R., Haugsrud, R., & Norby, T. (2014). Cathode compatibility, operation, and stability of LaNbO4-based proton conducting fuel cells. Solid State Ionics, 262, 382–387.CrossRef Magrasó, A., Fontaine, M.-L., Bredesen, R., Haugsrud, R., & Norby, T. (2014). Cathode compatibility, operation, and stability of LaNbO4-based proton conducting fuel cells. Solid State Ionics, 262, 382–387.CrossRef
go back to reference Magrasó, A., Fontaine, M. L., Larring, Y., Bredesen, R., Syvertsen, G., Lein, H., et al. (2011). Development of proton conducting SOFCs based on LaNbO4 electrolyte–status in Norway. Fuel Cells, 11, 17–25.CrossRef Magrasó, A., Fontaine, M. L., Larring, Y., Bredesen, R., Syvertsen, G., Lein, H., et al. (2011). Development of proton conducting SOFCs based on LaNbO4 electrolyte–status in Norway. Fuel Cells, 11, 17–25.CrossRef
go back to reference Mahato, N., Banerjee, A., Gupta, A., Omar, S., & Balani, K. (2015). Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141–337.CrossRef Mahato, N., Banerjee, A., Gupta, A., Omar, S., & Balani, K. (2015). Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141–337.CrossRef
go back to reference Mao, X., Yu, T., & Ma, G. (2015). Performance of cobalt-free double-perovskite NdBaFe2−xMnxO5+ δ cathode materials for proton-conducting IT-SOFC. Journal of Alloys and Compounds, 637, 286–290.CrossRef Mao, X., Yu, T., & Ma, G. (2015). Performance of cobalt-free double-perovskite NdBaFe2−xMnxO5+ δ cathode materials for proton-conducting IT-SOFC. Journal of Alloys and Compounds, 637, 286–290.CrossRef
go back to reference Matsumoto, H., Kawasaki, Y., Ito, N., Enoki, M., & Ishihara, T. (2007). Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants. Electrochemical and Solid-State Letters, 10, B77–B80.CrossRef Matsumoto, H., Kawasaki, Y., Ito, N., Enoki, M., & Ishihara, T. (2007). Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants. Electrochemical and Solid-State Letters, 10, B77–B80.CrossRef
go back to reference Medvedev, D., Lyagaeva, J., Gorbova, E., Demin, A., & Tsiakaras, P. (2016). Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes. Progress in Materials Science, 75, 38–79.CrossRef Medvedev, D., Lyagaeva, J., Gorbova, E., Demin, A., & Tsiakaras, P. (2016). Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes. Progress in Materials Science, 75, 38–79.CrossRef
go back to reference Medvedev, D., Lyagaeva, J., Plaksin, S., Demin, A., & Tsiakaras, P. (2015a). Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. Journal of Power Sources, 273, 716–723.CrossRef Medvedev, D., Lyagaeva, J., Plaksin, S., Demin, A., & Tsiakaras, P. (2015a). Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. Journal of Power Sources, 273, 716–723.CrossRef
go back to reference Medvedev, D., Murashkina, A., & Demin, A. (2015b). Formation of dense electrolytes based on BaCeO3 and BaZrO3 for application in solid oxide fuel cells: The role of solid-state reactive sintering. Review Journal of Chemistry, 5, 193–214.CrossRef Medvedev, D., Murashkina, A., & Demin, A. (2015b). Formation of dense electrolytes based on BaCeO3 and BaZrO3 for application in solid oxide fuel cells: The role of solid-state reactive sintering. Review Journal of Chemistry, 5, 193–214.CrossRef
go back to reference Medvedev, D., Murashkina, A., Pikalova, E., Demin, A., Podias, A., & Tsiakaras, P. (2014a). BaCeO3: Materials development, properties and application. Progress in Materials Science, 60, 72–129.CrossRef Medvedev, D., Murashkina, A., Pikalova, E., Demin, A., Podias, A., & Tsiakaras, P. (2014a). BaCeO3: Materials development, properties and application. Progress in Materials Science, 60, 72–129.CrossRef
go back to reference Medvedev, D., Pikalova, E., Demin, A., Podias, A., Korzun, I., Antonov, B., & Tsiakaras, P. (2014b). Structural, thermomechanical and electrical properties of new (1 − x) Ce0.8Nd0.2O2−δ–xBaCe0.8Nd0.2O3−δ composites. Journal of Power Sources, 267, 269–279.CrossRef Medvedev, D., Pikalova, E., Demin, A., Podias, A., Korzun, I., Antonov, B., & Tsiakaras, P. (2014b). Structural, thermomechanical and electrical properties of new (1 − x) Ce0.8Nd0.2O2−δ–xBaCe0.8Nd0.2O3−δ composites. Journal of Power Sources, 267, 269–279.CrossRef
go back to reference Meng, X., Yang, N., Song, J., Tan, X., Ma, Z.-F., & Li, K. (2011). Synthesis and characterization of terbium doped barium cerates as a proton conducting SOFC electrolyte. International Journal of Hydrogen Energy, 36, 13067–13072.CrossRef Meng, X., Yang, N., Song, J., Tan, X., Ma, Z.-F., & Li, K. (2011). Synthesis and characterization of terbium doped barium cerates as a proton conducting SOFC electrolyte. International Journal of Hydrogen Energy, 36, 13067–13072.CrossRef
go back to reference Mitsui, A., Miyayama, M., & Yanagida, H. (1987). Evaluation of the activation energy for proton conduction in perovskite-type oxides. Solid State Ionics, 22, 213–217.CrossRef Mitsui, A., Miyayama, M., & Yanagida, H. (1987). Evaluation of the activation energy for proton conduction in perovskite-type oxides. Solid State Ionics, 22, 213–217.CrossRef
go back to reference Mokkelbost, T., Lein, H. L., Vullum, P. E., Holmestad, R., Grande, T., & Einarsrud, M.-A. (2009). Thermal and mechanical properties of LaNbO4-based ceramics. Ceramics International, 35, 2877–2883.CrossRef Mokkelbost, T., Lein, H. L., Vullum, P. E., Holmestad, R., Grande, T., & Einarsrud, M.-A. (2009). Thermal and mechanical properties of LaNbO4-based ceramics. Ceramics International, 35, 2877–2883.CrossRef
go back to reference Nien, S., Hsu, C., Chang, C., & Hwang, B. (2011). Preparation of BaZr0.1Ce0.7Y0.2O3–δ based solid oxide fuel cells with anode functional layers by tape casting. Fuel Cells, 11, 178–183.CrossRef Nien, S., Hsu, C., Chang, C., & Hwang, B. (2011). Preparation of BaZr0.1Ce0.7Y0.2O3–δ based solid oxide fuel cells with anode functional layers by tape casting. Fuel Cells, 11, 178–183.CrossRef
go back to reference Nigara, Y., Yashiro, K., Kawada, T., & Mizusaki, J. (2003). Hydrogen permeability in (CeO2)0.9(GdO1.5) = at high temperatures. Solid State Ionics, 159, 135–141.CrossRef Nigara, Y., Yashiro, K., Kawada, T., & Mizusaki, J. (2003). Hydrogen permeability in (CeO2)0.9(GdO1.5) = at high temperatures. Solid State Ionics, 159, 135–141.CrossRef
go back to reference Niwa, J., Suehiro, T., Kishi, K., Ikeda, S., & Maeda, M. (2003). Structure and electrical characteristics of Ce4+-doped Ba2In2O5. Journal of Materials Science, 38, 3791–3795.CrossRef Niwa, J., Suehiro, T., Kishi, K., Ikeda, S., & Maeda, M. (2003). Structure and electrical characteristics of Ce4+-doped Ba2In2O5. Journal of Materials Science, 38, 3791–3795.CrossRef
go back to reference Norby, T., Haugsrud, R., Marion, S., Einarsrud, M. A., Wiik, K., Andersen, O., et al. (2013). Proton conductors. Google Patents. Norby, T., Haugsrud, R., Marion, S., Einarsrud, M. A., Wiik, K., Andersen, O., et al. (2013). Proton conductors. Google Patents.
go back to reference Norby, T., & Magrasó, A. (2015). On the development of proton ceramic fuel cells based on Ca-doped LaNbO4 as electrolyte. Journal of Power Sources, 282, 28–33.CrossRef Norby, T., & Magrasó, A. (2015). On the development of proton ceramic fuel cells based on Ca-doped LaNbO4 as electrolyte. Journal of Power Sources, 282, 28–33.CrossRef
go back to reference Nowick, A., & Du, Y. (1995). High-temperature protonic conductors with perovskite-related structures. Solid State Ionics, 77, 137–146.CrossRef Nowick, A., & Du, Y. (1995). High-temperature protonic conductors with perovskite-related structures. Solid State Ionics, 77, 137–146.CrossRef
go back to reference Okuyama, Y., Kozai, T., Ikeda, S., Matsuka, M., Sakai, T., & Matsumoto, H. (2014). Incorporation and conduction of proton in Sr-doped LaMO3 (M = Al, Sc, In, Yb, Y). Electrochimica Acta, 125, 443–449.CrossRef Okuyama, Y., Kozai, T., Ikeda, S., Matsuka, M., Sakai, T., & Matsumoto, H. (2014). Incorporation and conduction of proton in Sr-doped LaMO3 (M = Al, Sc, In, Yb, Y). Electrochimica Acta, 125, 443–449.CrossRef
go back to reference Okuyama, Y., Kozai, T., Sakai, T., Matsuka, M., & Matsumoto, H. (2013). Proton transport properties of La0.9M0.1YbO3−δ (M = Ba, Sr, Ca, Mg). Electrochimica Acta, 95, 54–59.CrossRef Okuyama, Y., Kozai, T., Sakai, T., Matsuka, M., & Matsumoto, H. (2013). Proton transport properties of La0.9M0.1YbO3−δ (M = Ba, Sr, Ca, Mg). Electrochimica Acta, 95, 54–59.CrossRef
go back to reference Omata, T., Fuke, T., & Otsuka-Yao-Matsuo, S. (2008). Mixed dopant effect in SrZrO3-based proton conductor. Solid State Ionics, 179, 1116–1119.CrossRef Omata, T., Fuke, T., & Otsuka-Yao-Matsuo, S. (2008). Mixed dopant effect in SrZrO3-based proton conductor. Solid State Ionics, 179, 1116–1119.CrossRef
go back to reference Omata, T., Ikeda, K., Tokashiki, R., & Otsuka-Yao-Matsuo, S. (2004). Proton solubility for La2Zr2O7 with a pyrochlore structure doped with a series of alkaline-earth ions. Solid State Ionics, 167, 389–397.CrossRef Omata, T., Ikeda, K., Tokashiki, R., & Otsuka-Yao-Matsuo, S. (2004). Proton solubility for La2Zr2O7 with a pyrochlore structure doped with a series of alkaline-earth ions. Solid State Ionics, 167, 389–397.CrossRef
go back to reference Omata, T., Okuda, K., Tsugimoto, S., & Otsuka-Matsuo-Yao, S. (1997). Water and hydrogen evolution properties and protonic conducting behaviors of Ca2+-doped La2Zr2O7 with a pyrochlore structure. Solid State Ionics, 104, 249–258.CrossRef Omata, T., Okuda, K., Tsugimoto, S., & Otsuka-Matsuo-Yao, S. (1997). Water and hydrogen evolution properties and protonic conducting behaviors of Ca2+-doped La2Zr2O7 with a pyrochlore structure. Solid State Ionics, 104, 249–258.CrossRef
go back to reference Osman, N., Talib, I. A., & Hamid, H. (2010). Effect of zirconium substitution on the phase formation and microstructure of BaCeO3. Sains Malaysiana, 39, 479–484. Osman, N., Talib, I. A., & Hamid, H. (2010). Effect of zirconium substitution on the phase formation and microstructure of BaCeO3. Sains Malaysiana, 39, 479–484.
go back to reference Park, H. J. (2011). Electrical properties of the protonic conductor 1 mol% Y-doped BaZrO3-δ. Journal of Solid State Electrochemistry, 15, 2205–2211.CrossRef Park, H. J. (2011). Electrical properties of the protonic conductor 1 mol% Y-doped BaZrO3-δ. Journal of Solid State Electrochemistry, 15, 2205–2211.CrossRef
go back to reference Park, K.-Y., Seo, Y., Kim, K. B., Song, S.-J., Park, B., & Park, J.-Y. (2015). Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells. Journal of Alloys and Compounds, 639, 435–444.CrossRef Park, K.-Y., Seo, Y., Kim, K. B., Song, S.-J., Park, B., & Park, J.-Y. (2015). Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells. Journal of Alloys and Compounds, 639, 435–444.CrossRef
go back to reference Pasierb, P., Wierzbicka, M., Komornicki, S., & Rekas, M. (2009). Electrochemical impedance spectroscopy of BaCeO3 modified by Ti and Y. Journal of Power Sources, 194, 31–37.CrossRef Pasierb, P., Wierzbicka, M., Komornicki, S., & Rekas, M. (2009). Electrochemical impedance spectroscopy of BaCeO3 modified by Ti and Y. Journal of Power Sources, 194, 31–37.CrossRef
go back to reference Patakangas, J., Ma, Y., Jing, Y., & Lund, P. (2014). Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC). Journal of Power Sources, 263, 315–331.CrossRef Patakangas, J., Ma, Y., Jing, Y., & Lund, P. (2014). Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC). Journal of Power Sources, 263, 315–331.CrossRef
go back to reference Pelosato, R., Cordaro, G., Stucchi, D., Cristiani, C., & Dotelli, G. (2015). Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: A brief review. Journal of Power Sources, 298, 46–67.CrossRef Pelosato, R., Cordaro, G., Stucchi, D., Cristiani, C., & Dotelli, G. (2015). Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: A brief review. Journal of Power Sources, 298, 46–67.CrossRef
go back to reference Peng, C., Melnik, J., Luo, J.-L., Sanger, A. R., & Chuang, K. T. (2010). BaZr0.8Y0.2O3−δ electrolyte with and without ZnO sintering aid: Preparation and characterization. Solid State Ionics, 181, 1372–1377.CrossRef Peng, C., Melnik, J., Luo, J.-L., Sanger, A. R., & Chuang, K. T. (2010). BaZr0.8Y0.2O3−δ electrolyte with and without ZnO sintering aid: Preparation and characterization. Solid State Ionics, 181, 1372–1377.CrossRef
go back to reference Pergolesi, D., Fabbri, E., & Traversa, E. (2010). Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochemistry Communications, 12, 977–980.CrossRef Pergolesi, D., Fabbri, E., & Traversa, E. (2010). Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochemistry Communications, 12, 977–980.CrossRef
go back to reference Qiu, L.-G., & Wang, M.-Y. (2010). Ionic conduction and fuel cell performance of Ba0.98Ce0.8Tm0.2O3−α Ceramic. Chinese Journal of Chemical Physics, 23, 707–712.MathSciNetCrossRef Qiu, L.-G., & Wang, M.-Y. (2010). Ionic conduction and fuel cell performance of Ba0.98Ce0.8Tm0.2O3−α Ceramic. Chinese Journal of Chemical Physics, 23, 707–712.MathSciNetCrossRef
go back to reference Qiu, L. G., Ma, G. L., & Wen, D. J. (2005). Properties and application of ceramic BaCe0.8Ho0.2O3−α. Chinese Journal of Chemistry, 23, 1641–1645.CrossRef Qiu, L. G., Ma, G. L., & Wen, D. J. (2005). Properties and application of ceramic BaCe0.8Ho0.2O3−α. Chinese Journal of Chemistry, 23, 1641–1645.CrossRef
go back to reference Radojković, A., Žunić, M., Savić, S., Branković, G., & Branković, Z. (2013). Chemical stability and electrical properties of Nb doped BaCe0.9Y0.1O3−δ as a high temperature proton conducting electrolyte for IT-SOFC. Ceramics International, 39, 307–313.CrossRef Radojković, A., Žunić, M., Savić, S., Branković, G., & Branković, Z. (2013). Chemical stability and electrical properties of Nb doped BaCe0.9Y0.1O3−δ as a high temperature proton conducting electrolyte for IT-SOFC. Ceramics International, 39, 307–313.CrossRef
go back to reference Ranran, P., Yan, W., Lizhai, Y., & Zongqiang, M. (2006). Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics, 177, 389–393.CrossRef Ranran, P., Yan, W., Lizhai, Y., & Zongqiang, M. (2006). Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics, 177, 389–393.CrossRef
go back to reference Ricote, S., Bonanos, N., Manerbino, A., & Coors, W. (2012). Conductivity study of dense BaCexZr(0.9−x)Y0.1O(3−δ) prepared by solid state reactive sintering at 1500 C. International Journal of Hydrogen Energy, 37, 7954–7961.CrossRef Ricote, S., Bonanos, N., Manerbino, A., & Coors, W. (2012). Conductivity study of dense BaCexZr(0.9−x)Y0.1O(3−δ) prepared by solid state reactive sintering at 1500 C. International Journal of Hydrogen Energy, 37, 7954–7961.CrossRef
go back to reference Rolle, A., Fafilek, G., & Vannier, R. (2008). Redox stability of Ba2In2O5-doped compounds. Solid State Ionics, 179, 113–119.CrossRef Rolle, A., Fafilek, G., & Vannier, R. (2008). Redox stability of Ba2In2O5-doped compounds. Solid State Ionics, 179, 113–119.CrossRef
go back to reference Ruiz-Trejo, E., & Kilner, J. A. (2009). Possible proton conduction in Ce0.9Gd0.1O2−δ nanoceramics. Journal of Applied Electrochemistry, 39, 523–528.CrossRef Ruiz-Trejo, E., & Kilner, J. A. (2009). Possible proton conduction in Ce0.9Gd0.1O2−δ nanoceramics. Journal of Applied Electrochemistry, 39, 523–528.CrossRef
go back to reference Sakai, T., Isa, K., Matsuka, M., Kozai, T., Okuyama, Y., Ishihara, T., et al. (2013). Electrochemical hydrogen pumps using Ba doped LaYbO3 type proton conducting electrolyte. International Journal of Hydrogen Energy, 38, 6842–6847.CrossRef Sakai, T., Isa, K., Matsuka, M., Kozai, T., Okuyama, Y., Ishihara, T., et al. (2013). Electrochemical hydrogen pumps using Ba doped LaYbO3 type proton conducting electrolyte. International Journal of Hydrogen Energy, 38, 6842–6847.CrossRef
go back to reference Sammes, N., Phillips, R., & Smirnova, A. (2004). Proton conductivity in stoichiometric and sub-stoichiometric yittrium doped SrCeO 3 ceramic electrolytes. Journal of Power Sources, 134, 153–159.CrossRef Sammes, N., Phillips, R., & Smirnova, A. (2004). Proton conductivity in stoichiometric and sub-stoichiometric yittrium doped SrCeO 3 ceramic electrolytes. Journal of Power Sources, 134, 153–159.CrossRef
go back to reference Sawant, P., Varma, S., Wani, B., & Bharadwaj, S. (2012). Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC. International Journal of Hydrogen Energy, 37, 3848–3856.CrossRef Sawant, P., Varma, S., Wani, B., & Bharadwaj, S. (2012). Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC. International Journal of Hydrogen Energy, 37, 3848–3856.CrossRef
go back to reference Schober, T., & Bohn, H. (2000). Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y0.1O2.95. Solid State Ionics, 127, 351–360.CrossRef Schober, T., & Bohn, H. (2000). Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y0.1O2.95. Solid State Ionics, 127, 351–360.CrossRef
go back to reference Shao, Q., Ge, W., Lu, X., Chen, Y., Ding, Y., Lin, B., et al. (2015). A promising cathode for proton-conducting intermediate temperature solid oxide fuel cells: Y0.8Ca0.2 BaCo 4 O 7 + δ. Ceramics International, 41, 6687–6692.CrossRef Shao, Q., Ge, W., Lu, X., Chen, Y., Ding, Y., Lin, B., et al. (2015). A promising cathode for proton-conducting intermediate temperature solid oxide fuel cells: Y0.8Ca0.2 BaCo 4 O 7 + δ. Ceramics International, 41, 6687–6692.CrossRef
go back to reference Sharova, N., & Gorelov, V. (2003). Electroconductivity and ion transport in protonic solid electrolytes BaCe0.85R0.15O3−δ, where R is a rare-earth element. Russian Journal of Electrochemistry, 39, 461–466.CrossRef Sharova, N., & Gorelov, V. (2003). Electroconductivity and ion transport in protonic solid electrolytes BaCe0.85R0.15O3−δ, where R is a rare-earth element. Russian Journal of Electrochemistry, 39, 461–466.CrossRef
go back to reference Sharova, N., & Gorelov, V. (2004). Effect of cation nonstoichiometry on the properties of solid electrolyte BaxCe0.97Nd0.03O3-δ(0.90 ≤ x ≤ 1.10). Russian Journal of Electrochemistry, 40, 639–645.CrossRef Sharova, N., & Gorelov, V. (2004). Effect of cation nonstoichiometry on the properties of solid electrolyte BaxCe0.97Nd0.03O3-δ(0.90 ≤ x ≤ 1.10). Russian Journal of Electrochemistry, 40, 639–645.CrossRef
go back to reference Sharova, N., & Gorelov, V. (2005). Characteristics of Proton-Conducting Electrolytes BaCe1−x Ndx O3−δ (0 ≤ x ≤ 0.16) in moist air. Russian Journal of Electrochemistry, 41, 1001–1007.CrossRef Sharova, N., & Gorelov, V. (2005). Characteristics of Proton-Conducting Electrolytes BaCe1−x Ndx O3−δ (0 ≤ x ≤ 0.16) in moist air. Russian Journal of Electrochemistry, 41, 1001–1007.CrossRef
go back to reference Shima, D., & Haile, S. (1997). The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate. Solid State Ionics, 97, 443–455.CrossRef Shima, D., & Haile, S. (1997). The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate. Solid State Ionics, 97, 443–455.CrossRef
go back to reference Shin, J. F., Orera, A., Apperley, D., & Slater, P. (2011). Oxyanion doping strategies to enhance the ionic conductivity in Ba2In2O5. Journal of Materials Chemistry, 21, 874–879.CrossRef Shin, J. F., Orera, A., Apperley, D., & Slater, P. (2011). Oxyanion doping strategies to enhance the ionic conductivity in Ba2In2O5. Journal of Materials Chemistry, 21, 874–879.CrossRef
go back to reference Shrivastava, U. N., Duncan, K. L., & Chung, J. (2012). Experimentally validated numerical modeling of Eu doped SrCeO3 membrane for hydrogen separation. International Journal of Hydrogen Energy, 37, 15350–15358.CrossRef Shrivastava, U. N., Duncan, K. L., & Chung, J. (2012). Experimentally validated numerical modeling of Eu doped SrCeO3 membrane for hydrogen separation. International Journal of Hydrogen Energy, 37, 15350–15358.CrossRef
go back to reference Solís, C., & Serra, J. M. (2011). Adjusting the conduction properties of La0.995Ca0.005NbO4−δ by doping for proton conducting fuel cells electrode operation. Solid State Ionics, 190, 38–45.CrossRef Solís, C., & Serra, J. M. (2011). Adjusting the conduction properties of La0.995Ca0.005NbO4−δ by doping for proton conducting fuel cells electrode operation. Solid State Ionics, 190, 38–45.CrossRef
go back to reference Stroeva, A. Y., Gorelov, V., & Balakireva, V. (2010). Conductivity of La1−xSrxSc1−yMgyO3−α (x = y = 0.01–0.20) in reducing atmosphere. Russian Journal of Electrochemistry, 46, 784–788.CrossRef Stroeva, A. Y., Gorelov, V., & Balakireva, V. (2010). Conductivity of La1−xSrxSc1−yMgyO3−α (x = y = 0.01–0.20) in reducing atmosphere. Russian Journal of Electrochemistry, 46, 784–788.CrossRef
go back to reference Su, F., Xia, C., & Peng, R. (2015). Novel fluoride-doped barium cerate applied as stable electrolyte in proton conducting solid oxide fuel cells. Journal of the European Ceramic Society, 35, 3553–3558.CrossRef Su, F., Xia, C., & Peng, R. (2015). Novel fluoride-doped barium cerate applied as stable electrolyte in proton conducting solid oxide fuel cells. Journal of the European Ceramic Society, 35, 3553–3558.CrossRef
go back to reference Sun, W., Fang, S., Yan, L., & Liu, W. (2012). Investigation on proton conductivity of La2Ce2O7 in wet atmosphere: Dependence on water vapor partial pressure. Fuel Cells, 12, 457–463.CrossRef Sun, W., Fang, S., Yan, L., & Liu, W. (2012). Investigation on proton conductivity of La2Ce2O7 in wet atmosphere: Dependence on water vapor partial pressure. Fuel Cells, 12, 457–463.CrossRef
go back to reference Sun, W., Liu, M., & Liu, W. (2013). Chemically stable yttrium and tin co-doped barium zirconate electrolyte for next generation high performance proton-conducting solid oxide fuel cells. Advanced Energy Materials, 3, 1041–1050.CrossRef Sun, W., Liu, M., & Liu, W. (2013). Chemically stable yttrium and tin co-doped barium zirconate electrolyte for next generation high performance proton-conducting solid oxide fuel cells. Advanced Energy Materials, 3, 1041–1050.CrossRef
go back to reference Sun, W., Yan, L., Shi, Z., Zhu, Z., & Liu, W. (2010). Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3−δ electrolyte membrane. Journal of Power Sources, 195, 4727–4730.CrossRef Sun, W., Yan, L., Shi, Z., Zhu, Z., & Liu, W. (2010). Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3−δ electrolyte membrane. Journal of Power Sources, 195, 4727–4730.CrossRef
go back to reference Sun, Z., Fabbri, E., Bi, L., & Traversa, E. (2011). Lowering grain boundary resistance of BaZr0.8Y0.2O3−δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Physical Chemistry Chemical Physics, 13, 7692–7700.CrossRef Sun, Z., Fabbri, E., Bi, L., & Traversa, E. (2011). Lowering grain boundary resistance of BaZr0.8Y0.2O3−δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Physical Chemistry Chemical Physics, 13, 7692–7700.CrossRef
go back to reference Syvertsen, G. E., Magrasó, A., Haugsrud, R., Einarsrud, M.-A., & Grande, T. (2012). The effect of cation non-stoichiometry in LaNbO4 materials. International Journal of Hydrogen Energy, 37, 8017–8026.CrossRef Syvertsen, G. E., Magrasó, A., Haugsrud, R., Einarsrud, M.-A., & Grande, T. (2012). The effect of cation non-stoichiometry in LaNbO4 materials. International Journal of Hydrogen Energy, 37, 8017–8026.CrossRef
go back to reference Ta, T. Q., Tsuji, T., & Yamamura, Y. (2006). Thermal and electrical properties of Ba2In2O5 substituted for In-site by rare earth elements. Journal of Alloys and Compounds, 408, 253–256.CrossRef Ta, T. Q., Tsuji, T., & Yamamura, Y. (2006). Thermal and electrical properties of Ba2In2O5 substituted for In-site by rare earth elements. Journal of Alloys and Compounds, 408, 253–256.CrossRef
go back to reference Takahashi, T., & Iwahara, H. (1979). Protonic conduction in perovksite-type oxide solid solutions. Abstracts of papers of the American Chemical Society. AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036, 207-207. Takahashi, T., & Iwahara, H. (1979). Protonic conduction in perovksite-type oxide solid solutions. Abstracts of papers of the American Chemical Society. AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036, 207-207.
go back to reference Tao, Z., Zhu, Z., Wang, H., & Liu, W. (2010). A stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 195, 3481–3484.CrossRef Tao, Z., Zhu, Z., Wang, H., & Liu, W. (2010). A stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 195, 3481–3484.CrossRef
go back to reference Tarasova, N., & Animitsa, I. (2015). Protonic transport in oxyfluorides Ba2InO3F and Ba3In2O5F2 with Ruddlesden-Popper structure. Solid State Ionics, 275, 53–57.CrossRef Tarasova, N., & Animitsa, I. (2015). Protonic transport in oxyfluorides Ba2InO3F and Ba3In2O5F2 with Ruddlesden-Popper structure. Solid State Ionics, 275, 53–57.CrossRef
go back to reference Tarasova, N., Animitsa, I., Denisova, T., & Nevmyvako, R. (2015). The influence of fluorine doping on short-range structure in brownmillerite Ba1.95In2O4.9F0.1. Solid State Ionics, 275, 47–52.CrossRef Tarasova, N., Animitsa, I., Denisova, T., & Nevmyvako, R. (2015). The influence of fluorine doping on short-range structure in brownmillerite Ba1.95In2O4.9F0.1. Solid State Ionics, 275, 47–52.CrossRef
go back to reference Tolchard, J., & Grande, T. (2007). Physicochemical compatibility of SrCeO3 with potential SOFC cathodes. Journal of Solid State Chemistry, 180, 2808–2815.CrossRef Tolchard, J., & Grande, T. (2007). Physicochemical compatibility of SrCeO3 with potential SOFC cathodes. Journal of Solid State Chemistry, 180, 2808–2815.CrossRef
go back to reference Tong, J., Clark, D., Hoban, M., & O’Hayre, R. (2010). Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ionics, 181, 496–503.CrossRef Tong, J., Clark, D., Hoban, M., & O’Hayre, R. (2010). Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ionics, 181, 496–503.CrossRef
go back to reference Tsai, C.-L., Kopczyk, M., Smith, R., & Schmidt, V. (2010). Low temperature sintering of Ba (Zr0.8−xCexY0.2)O3−δ using lithium fluoride additive. Solid State Ionics, 181, 1083–1090.CrossRef Tsai, C.-L., Kopczyk, M., Smith, R., & Schmidt, V. (2010). Low temperature sintering of Ba (Zr0.8−xCexY0.2)O3−δ using lithium fluoride additive. Solid State Ionics, 181, 1083–1090.CrossRef
go back to reference Tsipis, E. V., & Kharton, V. V. (2008). Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. Journal of Solid State Electrochemistry, 12, 1367–1391.CrossRef Tsipis, E. V., & Kharton, V. V. (2008). Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. Journal of Solid State Electrochemistry, 12, 1367–1391.CrossRef
go back to reference Uchida, H., Maeda, N., & Iwahara, H. (1982). Steam concentration cell using a high temperature type proton conductive solid electrolyte. Journal of Applied Electrochemistry, 12, 645–651.CrossRef Uchida, H., Maeda, N., & Iwahara, H. (1982). Steam concentration cell using a high temperature type proton conductive solid electrolyte. Journal of Applied Electrochemistry, 12, 645–651.CrossRef
go back to reference Uchida, H., Maeda, N., & Iwahara, H. (1983). Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures. Solid State Ionics, 11, 117–124.CrossRef Uchida, H., Maeda, N., & Iwahara, H. (1983). Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures. Solid State Ionics, 11, 117–124.CrossRef
go back to reference Uchida, H., Yoshikawa, H., & Iwahara, H. (1989). Formation of protons in SrCeO 3-based proton conducting oxides. Part I. Gas evolution and absorption in doped SrCeO3 at high temperature. Solid State Ionics, 34, 103–110.CrossRef Uchida, H., Yoshikawa, H., & Iwahara, H. (1989). Formation of protons in SrCeO 3-based proton conducting oxides. Part I. Gas evolution and absorption in doped SrCeO3 at high temperature. Solid State Ionics, 34, 103–110.CrossRef
go back to reference Van de Grotthuss, C. J. T. (2006). Memoir on the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity. Biochimica et Biophysica Acta (BBA) -. Bioenergetics, 1757, 871–875.CrossRef Van de Grotthuss, C. J. T. (2006). Memoir on the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity. Biochimica et Biophysica Acta (BBA) -. Bioenergetics, 1757, 871–875.CrossRef
go back to reference Virkar, A., & Maiti, H. (1985). Oxygen ion conduction in pure and yttria-doped barium cerate. Journal of Power Sources, 14, 295–303.CrossRef Virkar, A., & Maiti, H. (1985). Oxygen ion conduction in pure and yttria-doped barium cerate. Journal of Power Sources, 14, 295–303.CrossRef
go back to reference Vullum, F., Nitsche, F., Selbach, S. M., & Grande, T. (2008). Solid solubility and phase transitions in the system LaNb1-xTaxO4. Journal of Solid State Chemistry, 181, 2580–2585.CrossRef Vullum, F., Nitsche, F., Selbach, S. M., & Grande, T. (2008). Solid solubility and phase transitions in the system LaNb1-xTaxO4. Journal of Solid State Chemistry, 181, 2580–2585.CrossRef
go back to reference Wang, M.-Y., & Qiu, L.-G. (2008). Mixed Conduction in BaCe0.8Pr0.2O3-Ceramic. Chinese Journal of Chemical Physics, 21, 286–290.CrossRef Wang, M.-Y., & Qiu, L.-G. (2008). Mixed Conduction in BaCe0.8Pr0.2O3-Ceramic. Chinese Journal of Chemical Physics, 21, 286–290.CrossRef
go back to reference Wang, S., Zhao, F., Zhang, L., & Chen, F. (2012). Synthesis of BaCe0.7Zr0.1Y0.1Yb0.1O3−δ proton conducting ceramic by a modified Pechini method. Solid State Ionics, 213, 29–35.CrossRef Wang, S., Zhao, F., Zhang, L., & Chen, F. (2012). Synthesis of BaCe0.7Zr0.1Y0.1Yb0.1O3−δ proton conducting ceramic by a modified Pechini method. Solid State Ionics, 213, 29–35.CrossRef
go back to reference Wu, J., Li, L., Espinosa, W., & Haile, S. (2004). Defect chemistry and transport properties of BaxCe0.85M0.15O3–δ. Journal of Materials Research, 19, 2366–2376.CrossRef Wu, J., Li, L., Espinosa, W., & Haile, S. (2004). Defect chemistry and transport properties of BaxCe0.85M0.15O3–δ. Journal of Materials Research, 19, 2366–2376.CrossRef
go back to reference Wu, Z., & Liu, M. (1997). Stability of BaCe0.8Gd0.2O3 in a H2O-containing atmosphere at intermediate temperatures. Journal of the Electrochemical Society, 144, 2170–2175.CrossRef Wu, Z., & Liu, M. (1997). Stability of BaCe0.8Gd0.2O3 in a H2O-containing atmosphere at intermediate temperatures. Journal of the Electrochemical Society, 144, 2170–2175.CrossRef
go back to reference Xie, K., Yan, R., Chen, X., Wang, S., Jiang, Y., Liu, X., et al. (2009). A stable and easily sintering BaCeO3-based proton-conductive electrolyte. Journal of Alloys and Compounds, 473, 323–329.CrossRef Xie, K., Yan, R., Chen, X., Wang, S., Jiang, Y., Liu, X., et al. (2009). A stable and easily sintering BaCeO3-based proton-conductive electrolyte. Journal of Alloys and Compounds, 473, 323–329.CrossRef
go back to reference Xing, W., Dahl, P. I., Roaas, L. V., Fontaine, M.-L., Larring, Y., Henriksen, P. P., et al. (2015). Hydrogen permeability of SrCe0.7Zr0.25Ln0.05O3−δ membranes (Ln = Tm and Yb). Journal of Membrane Science, 473, 327–332.CrossRef Xing, W., Dahl, P. I., Roaas, L. V., Fontaine, M.-L., Larring, Y., Henriksen, P. P., et al. (2015). Hydrogen permeability of SrCe0.7Zr0.25Ln0.05O3−δ membranes (Ln = Tm and Yb). Journal of Membrane Science, 473, 327–332.CrossRef
go back to reference Yamanaka, S., Fujikane, M., Hamaguchi, T., Muta, H., Oyama, T., Matsuda, T., et al. (2003). Thermophysical properties of BaZrO3 and BaCeO3. Journal of Alloys and Compounds, 359, 109–113.CrossRef Yamanaka, S., Fujikane, M., Hamaguchi, T., Muta, H., Oyama, T., Matsuda, T., et al. (2003). Thermophysical properties of BaZrO3 and BaCeO3. Journal of Alloys and Compounds, 359, 109–113.CrossRef
go back to reference Yamazaki, Y., Hernandez-Sanchez, R., & Haile, S. M. (2009). High total proton conductivity in large-grained yttrium-doped barium zirconate. Chemistry of Materials, 21, 2755–2762.CrossRef Yamazaki, Y., Hernandez-Sanchez, R., & Haile, S. M. (2009). High total proton conductivity in large-grained yttrium-doped barium zirconate. Chemistry of Materials, 21, 2755–2762.CrossRef
go back to reference Yamazaki, Y., Hernandez-Sanchez, R., & Haile, S. M. (2010). Cation non-stoichiometry in yttrium-doped barium zirconate: Phase behavior, microstructure, and proton conductivity. Journal of Materials Chemistry, 20, 8158–8166.CrossRef Yamazaki, Y., Hernandez-Sanchez, R., & Haile, S. M. (2010). Cation non-stoichiometry in yttrium-doped barium zirconate: Phase behavior, microstructure, and proton conductivity. Journal of Materials Chemistry, 20, 8158–8166.CrossRef
go back to reference Yokokawa, H., Horita, T., Sakai, N., Yamaji, K., Brito, M., Xiong, Y.-P., et al. (2004). Protons in ceria and their roles in SOFC electrode reactions from thermodynamic and SIMS analyses. Solid State Ionics, 174, 205–221.CrossRef Yokokawa, H., Horita, T., Sakai, N., Yamaji, K., Brito, M., Xiong, Y.-P., et al. (2004). Protons in ceria and their roles in SOFC electrode reactions from thermodynamic and SIMS analyses. Solid State Ionics, 174, 205–221.CrossRef
go back to reference Yoo, C.-Y., Yun, D. S., Joo, J. H., & Yu, J. H. (2015). The effects of NiO addition on the structure and transport properties of proton conducting BaZr0.8Y0.2O3−δ. Journal of Alloys and Compounds, 621, 263–267.CrossRef Yoo, C.-Y., Yun, D. S., Joo, J. H., & Yu, J. H. (2015). The effects of NiO addition on the structure and transport properties of proton conducting BaZr0.8Y0.2O3−δ. Journal of Alloys and Compounds, 621, 263–267.CrossRef
go back to reference Yoshinaga, M., Yamaguchi, M., Furuya, T., Wang, S., & Hashimoto, T. (2004). The electrical conductivity and structural phase transitions of cation-substituted Ba2In2O5. Solid State Ionics, 169, 9–13.CrossRef Yoshinaga, M., Yamaguchi, M., Furuya, T., Wang, S., & Hashimoto, T. (2004). The electrical conductivity and structural phase transitions of cation-substituted Ba2In2O5. Solid State Ionics, 169, 9–13.CrossRef
go back to reference Zając, W., Hanc, E., Gorzkowska-Sobas, A., Świerczek, K., & Molenda, J. (2012). Nd-doped Ba (Ce, Zr)O3−δ proton conductors for application in conversion of CO2 into liquid fuels. Solid State Ionics, 225, 297–303.CrossRef Zając, W., Hanc, E., Gorzkowska-Sobas, A., Świerczek, K., & Molenda, J. (2012). Nd-doped Ba (Ce, Zr)O3−δ proton conductors for application in conversion of CO2 into liquid fuels. Solid State Ionics, 225, 297–303.CrossRef
go back to reference Zhang, C., Zhao, H., & Zhai, S. (2011). Electrical conduction behavior of proton conductor BaCe1−xSmxO3−δ in the intermediate temperature range. International Journal of Hydrogen Energy, 36, 3649–3657.CrossRef Zhang, C., Zhao, H., & Zhai, S. (2011). Electrical conduction behavior of proton conductor BaCe1−xSmxO3−δ in the intermediate temperature range. International Journal of Hydrogen Energy, 36, 3649–3657.CrossRef
go back to reference Zhang, G., & Smyth, D. (1995a). Defects and transport of the brownmillerite oxides with high oxygen ion conductivity—Ba2In2O5. Solid State Ionics, 82, 161–172.CrossRef Zhang, G., & Smyth, D. (1995a). Defects and transport of the brownmillerite oxides with high oxygen ion conductivity—Ba2In2O5. Solid State Ionics, 82, 161–172.CrossRef
go back to reference Zhang, G., & Smyth, D. (1995b). Protonic conduction in Ba2In2O5. Solid State Ionics, 82, 153–160.CrossRef Zhang, G., & Smyth, D. (1995b). Protonic conduction in Ba2In2O5. Solid State Ionics, 82, 153–160.CrossRef
go back to reference Zhang, X., Qiu, Y. E., Jin, F., Guo, F., Song, Y., & Zhu, B. (2013). A highly active anode functional layer for solid oxide fuel cells based on proton-conducting electrolyte BaZr0.1Ce0.7Y0.2O3−δ. Journal of Power Sources, 241, 654–659.CrossRef Zhang, X., Qiu, Y. E., Jin, F., Guo, F., Song, Y., & Zhu, B. (2013). A highly active anode functional layer for solid oxide fuel cells based on proton-conducting electrolyte BaZr0.1Ce0.7Y0.2O3−δ. Journal of Power Sources, 241, 654–659.CrossRef
Metadata
Title
Proton-Conducting Electrolytes for Solid Oxide Fuel Cell Applications
Authors
Dmitry Medvedev
Angeliki Brouzgou
Anatoly Demin
Panagiotis Tsiakaras
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-46146-5_3