Skip to main content
Top
Published in: Fluid Dynamics 2/2023

01-04-2023

Pulsating Turbulent Flows through a Square Pipe

Authors: N. V. Nikitin, N. V. Popelenskaya

Published in: Fluid Dynamics | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pulsating turbulent flows in a square pipe are studied numerically. The flow dominance regime in which the fluid flow rate remains positive in all phases of the oscillatory cycle is considered. The flows are studied at several oscillation frequencies. The results are compared with oscillating laminar flows and a steady turbulent flow in a square pipe, as well as with pulsating turbulent flows in a round pipe. The integral and fluctuating characteristics of turbulence and their dependence on the oscillation frequency are determined. In particular, it is found that at the considered Reynolds number Re = 2200 the friction coefficient in pulsating flows turns out to be lower than that in the stationary flows. The drag reduction increases with growth of the oscillation period and reaches 14.7%. A distinctive feature of turbulent flows in pipes of rectangular cross-section is the occurrence of secondary flows of Prandtl’s 2nd kind. The details of secondary flows under the pulsating flow conditions are studied at length.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brereton, G.J. and Mankbadi, R.R., Review of recent advances in the study of unsteady turbulent internal flows, Appl. Mech. Rev., 1995, vol. 48, no. 4, pp. 189–212.ADSCrossRef Brereton, G.J. and Mankbadi, R.R., Review of recent advances in the study of unsteady turbulent internal flows, Appl. Mech. Rev., 1995, vol. 48, no. 4, pp. 189–212.ADSCrossRef
2.
go back to reference Carpinlioglu, M.O. and Gundogdu, M.Y., A critical review on pulsatile pipe flow studies directing towards future research topics, Flow Meas. Instrum., 2001, vol. 12, pp. 163–174.CrossRef Carpinlioglu, M.O. and Gundogdu, M.Y., A critical review on pulsatile pipe flow studies directing towards future research topics, Flow Meas. Instrum., 2001, vol. 12, pp. 163–174.CrossRef
3.
go back to reference Manna M., Vacca A., and Verzicco R., Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis, J. Fluid Mech., 2012, vol. 700, pp. 246–282.ADSCrossRefMATH Manna M., Vacca A., and Verzicco R., Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis, J. Fluid Mech., 2012, vol. 700, pp. 246–282.ADSCrossRefMATH
4.
go back to reference Papadopoulos P.K. and Vouros A.P., Pulsating turbulent pipe flow in the current dominated regime at high and very-high frequencies, Int. J. Heat Fluid Flow, 2016, vol. 58, pp. 54–67. Papadopoulos P.K. and Vouros A.P., Pulsating turbulent pipe flow in the current dominated regime at high and very-high frequencies, Int. J. Heat Fluid Flow, 2016, vol. 58, pp. 54–67.
5.
go back to reference Stokes, G.G., On the effect of the internal friction of fluids on the motion of pendulums, Cambridge Philos. Soc., 1850, vol. 9, pp. 1–86.ADS Stokes, G.G., On the effect of the internal friction of fluids on the motion of pendulums, Cambridge Philos. Soc., 1850, vol. 9, pp. 1–86.ADS
6.
go back to reference Ramaprian, B.R. and Tu, S.W., Fully developed periodic turbulent pipe flow. Part 2. The detailed structure of the flow, J. Fluid Mech., 1983, vol. 137, pp. 59–81.ADSCrossRef Ramaprian, B.R. and Tu, S.W., Fully developed periodic turbulent pipe flow. Part 2. The detailed structure of the flow, J. Fluid Mech., 1983, vol. 137, pp. 59–81.ADSCrossRef
7.
go back to reference Tardu S.F. and Binder G., Wall shear stress modulation in unsteady turbulent channel flow with high imposed frequencies, Phys. Fluids, 1993, vol. 5, pp. 2028–2034.CrossRef Tardu S.F. and Binder G., Wall shear stress modulation in unsteady turbulent channel flow with high imposed frequencies, Phys. Fluids, 1993, vol. 5, pp. 2028–2034.CrossRef
9.
go back to reference Gavrilakis, S., Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct, J. Fluid Mech., 1992, vol. 244, pp. 101–129.ADSCrossRef Gavrilakis, S., Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct, J. Fluid Mech., 1992, vol. 244, pp. 101–129.ADSCrossRef
10.
go back to reference Nikitin, N.V., Pimanov, V.O., and Popelenskaya, N.V., Mechanism of formation of Prandtl’s secondary flows of the second kind, Doklady Physics, 2019, vol. 64 (2), pp. 61–65.ADSCrossRef Nikitin, N.V., Pimanov, V.O., and Popelenskaya, N.V., Mechanism of formation of Prandtl’s secondary flows of the second kind, Doklady Physics, 2019, vol. 64 (2), pp. 61–65.ADSCrossRef
11.
go back to reference Uhlmann, M., Pinelli, A., Kawahara, G., and Sekimoto, A., Marginally turbulent flow in a square duct, J. Fluid Mech., 2007, vol. 588, pp. 153–162.ADSCrossRefMATH Uhlmann, M., Pinelli, A., Kawahara, G., and Sekimoto, A., Marginally turbulent flow in a square duct, J. Fluid Mech., 2007, vol. 588, pp. 153–162.ADSCrossRefMATH
12.
go back to reference Nikitin, N., Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates, J. Comput. Phys., 2006, vol. 217, pp. 759–781.ADSMathSciNetCrossRefMATH Nikitin, N., Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates, J. Comput. Phys., 2006, vol. 217, pp. 759–781.ADSMathSciNetCrossRefMATH
13.
go back to reference Yakhot, A., Arad, M., and Ben-Dor, G., Numerical investigation of a laminar pulsating flow in a rectangular duct, Int. J. Numer. Meth. Fluids, 1999, vol. 29, pp. 935–950.CrossRefMATH Yakhot, A., Arad, M., and Ben-Dor, G., Numerical investigation of a laminar pulsating flow in a rectangular duct, Int. J. Numer. Meth. Fluids, 1999, vol. 29, pp. 935–950.CrossRefMATH
14.
go back to reference Valueva, E.P. and Purdin, M.S., Pulsating laminar flow in a rectilinear channel, Teplofiz. Aeromekh., 2015, vol. 22, no. 6, pp. 761–773. Valueva, E.P. and Purdin, M.S., Pulsating laminar flow in a rectilinear channel, Teplofiz. Aeromekh., 2015, vol. 22, no. 6, pp. 761–773.
15.
go back to reference White, F.M., Viscous Fluid Flow, 3rd edition, McGraw-Hill, 2006. White, F.M., Viscous Fluid Flow, 3rd edition, McGraw-Hill, 2006.
16.
17.
go back to reference Richardson, E.G. and Tyler, E., The transfer velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established, Proc. Phys. Soc. Lond., 1929, vol. 42, pp. 1–15.ADSCrossRefMATH Richardson, E.G. and Tyler, E., The transfer velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established, Proc. Phys. Soc. Lond., 1929, vol. 42, pp. 1–15.ADSCrossRefMATH
18.
go back to reference Lodahl, C.R., Sumer, B.M., and Fredosoe, J., Turbulent combined oscillatory flow and current in a pipe, J. Fluid Mech., 1998, vol. 373, pp. 313–348.ADSCrossRefMATH Lodahl, C.R., Sumer, B.M., and Fredosoe, J., Turbulent combined oscillatory flow and current in a pipe, J. Fluid Mech., 1998, vol. 373, pp. 313–348.ADSCrossRefMATH
19.
go back to reference Manna, M. and Vacca, A., Spectral dynamic of pulsating turbulent pipe flow, Comput. Fluids, 2007, vol. 37, pp. 825–835.CrossRefMATH Manna, M. and Vacca, A., Spectral dynamic of pulsating turbulent pipe flow, Comput. Fluids, 2007, vol. 37, pp. 825–835.CrossRefMATH
20.
go back to reference Gerrard, J.H., An experimental investigation of pulsating turbulent water flow in a tube, J. Fluid Mech., 1971, vol. 46, pp. 43–64.ADSCrossRef Gerrard, J.H., An experimental investigation of pulsating turbulent water flow in a tube, J. Fluid Mech., 1971, vol. 46, pp. 43–64.ADSCrossRef
Metadata
Title
Pulsating Turbulent Flows through a Square Pipe
Authors
N. V. Nikitin
N. V. Popelenskaya
Publication date
01-04-2023
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 2/2023
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462822601991

Other articles of this Issue 2/2023

Fluid Dynamics 2/2023 Go to the issue

Premium Partners