Skip to main content
Erschienen in: Fluid Dynamics 2/2023

01.04.2023

Pulsating Turbulent Flows through a Square Pipe

verfasst von: N. V. Nikitin, N. V. Popelenskaya

Erschienen in: Fluid Dynamics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pulsating turbulent flows in a square pipe are studied numerically. The flow dominance regime in which the fluid flow rate remains positive in all phases of the oscillatory cycle is considered. The flows are studied at several oscillation frequencies. The results are compared with oscillating laminar flows and a steady turbulent flow in a square pipe, as well as with pulsating turbulent flows in a round pipe. The integral and fluctuating characteristics of turbulence and their dependence on the oscillation frequency are determined. In particular, it is found that at the considered Reynolds number Re = 2200 the friction coefficient in pulsating flows turns out to be lower than that in the stationary flows. The drag reduction increases with growth of the oscillation period and reaches 14.7%. A distinctive feature of turbulent flows in pipes of rectangular cross-section is the occurrence of secondary flows of Prandtl’s 2nd kind. The details of secondary flows under the pulsating flow conditions are studied at length.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brereton, G.J. and Mankbadi, R.R., Review of recent advances in the study of unsteady turbulent internal flows, Appl. Mech. Rev., 1995, vol. 48, no. 4, pp. 189–212.ADSCrossRef Brereton, G.J. and Mankbadi, R.R., Review of recent advances in the study of unsteady turbulent internal flows, Appl. Mech. Rev., 1995, vol. 48, no. 4, pp. 189–212.ADSCrossRef
2.
Zurück zum Zitat Carpinlioglu, M.O. and Gundogdu, M.Y., A critical review on pulsatile pipe flow studies directing towards future research topics, Flow Meas. Instrum., 2001, vol. 12, pp. 163–174.CrossRef Carpinlioglu, M.O. and Gundogdu, M.Y., A critical review on pulsatile pipe flow studies directing towards future research topics, Flow Meas. Instrum., 2001, vol. 12, pp. 163–174.CrossRef
3.
Zurück zum Zitat Manna M., Vacca A., and Verzicco R., Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis, J. Fluid Mech., 2012, vol. 700, pp. 246–282.ADSCrossRefMATH Manna M., Vacca A., and Verzicco R., Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis, J. Fluid Mech., 2012, vol. 700, pp. 246–282.ADSCrossRefMATH
4.
Zurück zum Zitat Papadopoulos P.K. and Vouros A.P., Pulsating turbulent pipe flow in the current dominated regime at high and very-high frequencies, Int. J. Heat Fluid Flow, 2016, vol. 58, pp. 54–67. Papadopoulos P.K. and Vouros A.P., Pulsating turbulent pipe flow in the current dominated regime at high and very-high frequencies, Int. J. Heat Fluid Flow, 2016, vol. 58, pp. 54–67.
5.
Zurück zum Zitat Stokes, G.G., On the effect of the internal friction of fluids on the motion of pendulums, Cambridge Philos. Soc., 1850, vol. 9, pp. 1–86.ADS Stokes, G.G., On the effect of the internal friction of fluids on the motion of pendulums, Cambridge Philos. Soc., 1850, vol. 9, pp. 1–86.ADS
6.
Zurück zum Zitat Ramaprian, B.R. and Tu, S.W., Fully developed periodic turbulent pipe flow. Part 2. The detailed structure of the flow, J. Fluid Mech., 1983, vol. 137, pp. 59–81.ADSCrossRef Ramaprian, B.R. and Tu, S.W., Fully developed periodic turbulent pipe flow. Part 2. The detailed structure of the flow, J. Fluid Mech., 1983, vol. 137, pp. 59–81.ADSCrossRef
7.
Zurück zum Zitat Tardu S.F. and Binder G., Wall shear stress modulation in unsteady turbulent channel flow with high imposed frequencies, Phys. Fluids, 1993, vol. 5, pp. 2028–2034.CrossRef Tardu S.F. and Binder G., Wall shear stress modulation in unsteady turbulent channel flow with high imposed frequencies, Phys. Fluids, 1993, vol. 5, pp. 2028–2034.CrossRef
9.
Zurück zum Zitat Gavrilakis, S., Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct, J. Fluid Mech., 1992, vol. 244, pp. 101–129.ADSCrossRef Gavrilakis, S., Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct, J. Fluid Mech., 1992, vol. 244, pp. 101–129.ADSCrossRef
10.
Zurück zum Zitat Nikitin, N.V., Pimanov, V.O., and Popelenskaya, N.V., Mechanism of formation of Prandtl’s secondary flows of the second kind, Doklady Physics, 2019, vol. 64 (2), pp. 61–65.ADSCrossRef Nikitin, N.V., Pimanov, V.O., and Popelenskaya, N.V., Mechanism of formation of Prandtl’s secondary flows of the second kind, Doklady Physics, 2019, vol. 64 (2), pp. 61–65.ADSCrossRef
11.
Zurück zum Zitat Uhlmann, M., Pinelli, A., Kawahara, G., and Sekimoto, A., Marginally turbulent flow in a square duct, J. Fluid Mech., 2007, vol. 588, pp. 153–162.ADSCrossRefMATH Uhlmann, M., Pinelli, A., Kawahara, G., and Sekimoto, A., Marginally turbulent flow in a square duct, J. Fluid Mech., 2007, vol. 588, pp. 153–162.ADSCrossRefMATH
12.
Zurück zum Zitat Nikitin, N., Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates, J. Comput. Phys., 2006, vol. 217, pp. 759–781.ADSMathSciNetCrossRefMATH Nikitin, N., Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates, J. Comput. Phys., 2006, vol. 217, pp. 759–781.ADSMathSciNetCrossRefMATH
13.
Zurück zum Zitat Yakhot, A., Arad, M., and Ben-Dor, G., Numerical investigation of a laminar pulsating flow in a rectangular duct, Int. J. Numer. Meth. Fluids, 1999, vol. 29, pp. 935–950.CrossRefMATH Yakhot, A., Arad, M., and Ben-Dor, G., Numerical investigation of a laminar pulsating flow in a rectangular duct, Int. J. Numer. Meth. Fluids, 1999, vol. 29, pp. 935–950.CrossRefMATH
14.
Zurück zum Zitat Valueva, E.P. and Purdin, M.S., Pulsating laminar flow in a rectilinear channel, Teplofiz. Aeromekh., 2015, vol. 22, no. 6, pp. 761–773. Valueva, E.P. and Purdin, M.S., Pulsating laminar flow in a rectilinear channel, Teplofiz. Aeromekh., 2015, vol. 22, no. 6, pp. 761–773.
15.
Zurück zum Zitat White, F.M., Viscous Fluid Flow, 3rd edition, McGraw-Hill, 2006. White, F.M., Viscous Fluid Flow, 3rd edition, McGraw-Hill, 2006.
16.
Zurück zum Zitat Uchida, S., Pulsating viscous flow superposed on the steady laminar motion, Z. angew. Math. Phys., 1956, vol. 7, pp. 403–422.MathSciNetCrossRefMATH Uchida, S., Pulsating viscous flow superposed on the steady laminar motion, Z. angew. Math. Phys., 1956, vol. 7, pp. 403–422.MathSciNetCrossRefMATH
17.
Zurück zum Zitat Richardson, E.G. and Tyler, E., The transfer velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established, Proc. Phys. Soc. Lond., 1929, vol. 42, pp. 1–15.ADSCrossRefMATH Richardson, E.G. and Tyler, E., The transfer velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established, Proc. Phys. Soc. Lond., 1929, vol. 42, pp. 1–15.ADSCrossRefMATH
18.
Zurück zum Zitat Lodahl, C.R., Sumer, B.M., and Fredosoe, J., Turbulent combined oscillatory flow and current in a pipe, J. Fluid Mech., 1998, vol. 373, pp. 313–348.ADSCrossRefMATH Lodahl, C.R., Sumer, B.M., and Fredosoe, J., Turbulent combined oscillatory flow and current in a pipe, J. Fluid Mech., 1998, vol. 373, pp. 313–348.ADSCrossRefMATH
19.
Zurück zum Zitat Manna, M. and Vacca, A., Spectral dynamic of pulsating turbulent pipe flow, Comput. Fluids, 2007, vol. 37, pp. 825–835.CrossRefMATH Manna, M. and Vacca, A., Spectral dynamic of pulsating turbulent pipe flow, Comput. Fluids, 2007, vol. 37, pp. 825–835.CrossRefMATH
20.
Zurück zum Zitat Gerrard, J.H., An experimental investigation of pulsating turbulent water flow in a tube, J. Fluid Mech., 1971, vol. 46, pp. 43–64.ADSCrossRef Gerrard, J.H., An experimental investigation of pulsating turbulent water flow in a tube, J. Fluid Mech., 1971, vol. 46, pp. 43–64.ADSCrossRef
21.
Metadaten
Titel
Pulsating Turbulent Flows through a Square Pipe
verfasst von
N. V. Nikitin
N. V. Popelenskaya
Publikationsdatum
01.04.2023
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 2/2023
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462822601991

Weitere Artikel der Ausgabe 2/2023

Fluid Dynamics 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.