Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 3/2017

10-02-2017

Quantification of Epistemic Uncertainty in Grain Attachment Models for Equiaxed Solidification

Authors: A. Plotkowski, M. J. M. Krane

Published in: Metallurgical and Materials Transactions B | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent work has investigated various schemes for the attachment of free-floating grains in models of equiaxed solidification in multicomponent alloys. However, these models are deterministic in nature, and simply investigating their differences for a limited number of results would not constitute an adequate comparison of their predictions. Instead, the models are compared in the context of the uncertainty in the most important input parameters. This approach is especially important in light of the effort required to implement a new model. If the predictions are essentially the same, then either model will suffice, or one may be selected for ease of implementation, numerical robustness, or computational efficiency. If, however, the models are significantly different, then the most accurate should be selected. In order to investigate the effects of input uncertainty on the output of grain attachment models, the PRISM Uncertainty Quantification framework was employed. The three models investigated were a constant packing fraction (CPF) scheme, an average solid velocity method (AVM), and a continuum attachment approach. Comparisons were made between the CPF and AVM models to estimate the importance of the local velocity field and between the CPF and continuum models to determine the sensitivity of the macrosegregation to new parameters unique to the continuum model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference [1] A. Chernatynskiy, S. R. Phillpot, and R. LeSar: Annu. Rev. Mater. Res., 2013, vol. 43, pp. 157–82.CrossRef [1] A. Chernatynskiy, S. R. Phillpot, and R. LeSar: Annu. Rev. Mater. Res., 2013, vol. 43, pp. 157–82.CrossRef
2.
go back to reference P. Marepalli, J.Y. Murthy, B. Qiu, and X. Ruan: J. Heat Transf., 2014, vol. 136, art no. 111301. P. Marepalli, J.Y. Murthy, B. Qiu, and X. Ruan: J. Heat Transf., 2014, vol. 136, art no. 111301.
3.
go back to reference [3] P. J. Roache: Annu. Rev. Fluid Mech., 1997, vol. 29, pp. 123–60.CrossRef [3] P. J. Roache: Annu. Rev. Fluid Mech., 1997, vol. 29, pp. 123–60.CrossRef
4.
go back to reference [4] Habib N Najm: Annu. Rev. Fluid Mech., 2009, vol. 41, pp. 35–52.CrossRef [4] Habib N Najm: Annu. Rev. Fluid Mech., 2009, vol. 41, pp. 35–52.CrossRef
5.
go back to reference [5] R. A. Hardin, K. K. Choi, N. J. Gaul, and C. Beckermann: Int. J. Cast Met. Res., 2015, vol. 28, pp. 181–92.CrossRef [5] R. A. Hardin, K. K. Choi, N. J. Gaul, and C. Beckermann: Int. J. Cast Met. Res., 2015, vol. 28, pp. 181–92.CrossRef
6.
go back to reference [6] K. Fezi and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 84, p. 12001.CrossRef [6] K. Fezi and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 84, p. 12001.CrossRef
7.
go back to reference K. Fezi and M. J. M. Krane: Int. J. Cast Met. Res., 2016, Available Online. K. Fezi and M. J. M. Krane: Int. J. Cast Met. Res., 2016, Available Online.
8.
go back to reference K. Fezi and M. J. M. Krane: J. Heat Transfer, 2016, In Press. K. Fezi and M. J. M. Krane: J. Heat Transfer, 2016, In Press.
9.
go back to reference [9] K. Fezi and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 143, pp. 407–14.CrossRef [9] K. Fezi and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 143, pp. 407–14.CrossRef
10.
go back to reference [10] J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22, pp. 349–61.CrossRef [10] J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22, pp. 349–61.CrossRef
11.
go back to reference A. V. Reddy and C. Beckermann: in Mater. Process. Comput. Age II, V. R. Voller, S. P. Marsh, and N. El-Kaddah, eds., 1995, pp. 89–102. A. V. Reddy and C. Beckermann: in Mater. Process. Comput. Age II, V. R. Voller, S. P. Marsh, and N. El-Kaddah, eds., 1995, pp. 89–102.
12.
go back to reference [12] G. D. Scott and D. M. Kilgour: J. Phys. D. Appl. Phys., 2002, vol. 2, pp. 863–66.CrossRef [12] G. D. Scott and D. M. Kilgour: J. Phys. D. Appl. Phys., 2002, vol. 2, pp. 863–66.CrossRef
13.
go back to reference [13] C. Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2754–64.CrossRef [13] C. Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2754–64.CrossRef
14.
go back to reference [14] C. Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2765–83.CrossRef [14] C. Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2765–83.CrossRef
15.
go back to reference [15] C Y Wang and C. Beckermann: Metall. Trans. A, 1993, vol. 24, pp. 2787–2802.CrossRef [15] C Y Wang and C. Beckermann: Metall. Trans. A, 1993, vol. 24, pp. 2787–2802.CrossRef
16.
go back to reference [16] A. Ludwig and M. Wu: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3673–83.CrossRef [16] A. Ludwig and M. Wu: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3673–83.CrossRef
17.
go back to reference [17] M. Zaloznik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48, pp. 1–10.CrossRef [17] M. Zaloznik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48, pp. 1–10.CrossRef
18.
go back to reference [18] W. D. Bennon and F. P. Incropera: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 2171–87.CrossRef [18] W. D. Bennon and F. P. Incropera: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 2171–87.CrossRef
19.
go back to reference [19] W. D. Bennon and F. P. Incropera: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 2161–70.CrossRef [19] W. D. Bennon and F. P. Incropera: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 2161–70.CrossRef
20.
go back to reference [20] C. J. Vreeman, M. J. M. Krane, and F. P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 677–86.CrossRef [20] C. J. Vreeman, M. J. M. Krane, and F. P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 677–86.CrossRef
21.
go back to reference [21] C. J. Vreeman and F. P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 687–704.CrossRef [21] C. J. Vreeman and F. P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 687–704.CrossRef
22.
go back to reference [22] J. Ni and F. P. Incropera: Int. J. Heat Mass Transf., 1995, vol. 38, pp. 1271–84.CrossRef [22] J. Ni and F. P. Incropera: Int. J. Heat Mass Transf., 1995, vol. 38, pp. 1271–84.CrossRef
23.
go back to reference [23] J. Ni and F. P. Incropera: Int. J. Heat Mass Transf., 1995, vol. 38, pp. 1285–96.CrossRef [23] J. Ni and F. P. Incropera: Int. J. Heat Mass Transf., 1995, vol. 38, pp. 1285–96.CrossRef
24.
go back to reference [24] C. J. Vreeman, J. D. Schloz, and M. J. M. Krane: ASME J. Heat Transf., 2002, vol. 124, p. 947.CrossRef [24] C. J. Vreeman, J. D. Schloz, and M. J. M. Krane: ASME J. Heat Transf., 2002, vol. 124, p. 947.CrossRef
25.
go back to reference [25] I. Vusanovic and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, pp. 1–6. [25] I. Vusanovic and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, pp. 1–6.
26.
go back to reference [26] A. Plotkowski and M. J. M. Krane: Appl. Math. Model., 2016, vol. 40, pp. 9212–27.CrossRef [26] A. Plotkowski and M. J. M. Krane: Appl. Math. Model., 2016, vol. 40, pp. 9212–27.CrossRef
27.
go back to reference [27] A. Plotkowski and M. J. M. Krane: Comput. Mater. Sci., 2016, vol. 124, pp. 238–48.CrossRef [27] A. Plotkowski and M. J. M. Krane: Comput. Mater. Sci., 2016, vol. 124, pp. 238–48.CrossRef
28.
go back to reference [28] S. V. Patankar: Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY, 1980. [28] S. V. Patankar: Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY, 1980.
29.
go back to reference C. J. Vreeman: M.S. Thesis Purdue University, 1997. C. J. Vreeman: M.S. Thesis Purdue University, 1997.
30.
go back to reference [30] V. R. Voller and C. R. Swaminathan: Numer. Heat Transf. Part B Fundam., 1991, vol. 19, pp. 175–89.CrossRef [30] V. R. Voller and C. R. Swaminathan: Numer. Heat Transf. Part B Fundam., 1991, vol. 19, pp. 175–89.CrossRef
31.
go back to reference [31] C. J. Vreeman and F. P. Incropera: Numer. Heat Transf. Part B Fundam., 1999, vol. 36, pp. 1–14. [31] C. J. Vreeman and F. P. Incropera: Numer. Heat Transf. Part B Fundam., 1999, vol. 36, pp. 1–14.
32.
go back to reference [32] A. Kumar, B. Dussoubs, M. Zaloznik, and H. Combeau: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, pp. 1–8.CrossRef [32] A. Kumar, B. Dussoubs, M. Zaloznik, and H. Combeau: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, pp. 1–8.CrossRef
33.
34.
35.
go back to reference [35] M. Hunt, B. Haley, M. McLennan, M. Koslowski, J. Murthy, and A. Strachan: Comput. Phys. Commun., 2015, vol. 194, pp. 97–107.CrossRef [35] M. Hunt, B. Haley, M. McLennan, M. Koslowski, J. Murthy, and A. Strachan: Comput. Phys. Commun., 2015, vol. 194, pp. 97–107.CrossRef
36.
37.
go back to reference [37] F. Campolongo, J. Cariboni, and A. Saltelli: Environ. Model. Softw., 2007, vol. 22, pp. 1509–18.CrossRef [37] F. Campolongo, J. Cariboni, and A. Saltelli: Environ. Model. Softw., 2007, vol. 22, pp. 1509–18.CrossRef
38.
go back to reference [38] A. Bhattacharyya: Bull. Calcutta Math. Soc., 1943, vol. 35, pp. 99–109. [38] A. Bhattacharyya: Bull. Calcutta Math. Soc., 1943, vol. 35, pp. 99–109.
39.
go back to reference [39] T. Kailath: IEEE Trans. Commun. Technol., 1967, vol. 15, pp. 52–60.CrossRef [39] T. Kailath: IEEE Trans. Commun. Technol., 1967, vol. 15, pp. 52–60.CrossRef
40.
go back to reference [40] K. Fezi, A. Plotkowski, and M. J. M. Krane: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2940–51.CrossRef [40] K. Fezi, A. Plotkowski, and M. J. M. Krane: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2940–51.CrossRef
41.
go back to reference [41] J. O. Andersson, Thomas Helander, Lars Höglund, Pingfang Shi, and Bo Sundman: Calphad Comput. Coupling Phase Diagrams Thermochem., 2002, vol. 26, pp. 273–312.CrossRef [41] J. O. Andersson, Thomas Helander, Lars Höglund, Pingfang Shi, and Bo Sundman: Calphad Comput. Coupling Phase Diagrams Thermochem., 2002, vol. 26, pp. 273–312.CrossRef
42.
go back to reference M. Lalpoor, D. G. Eskin, D. Ruvalcaba, H. G. Fjær, A. Ten Cate, N. Ontijt, and L. Katgerman: Mater. Sci. Eng. B, 2011, vol. 528, pp. 2831–42.CrossRef M. Lalpoor, D. G. Eskin, D. Ruvalcaba, H. G. Fjær, A. Ten Cate, N. Ontijt, and L. Katgerman: Mater. Sci. Eng. B, 2011, vol. 528, pp. 2831–42.CrossRef
43.
go back to reference W. F. Gale: Smithells Metals Reference Book, 8th ed., Elsevier, New York, 2004. W. F. Gale: Smithells Metals Reference Book, 8th ed., Elsevier, New York, 2004.
44.
go back to reference [44] T. Iida and R. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1988. [44] T. Iida and R. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1988.
45.
go back to reference [45] A. Plotkowski and M. J. M. Krane: J. Heat Transfer, 2015, vol. 137, pp. 0313011–19.CrossRef [45] A. Plotkowski and M. J. M. Krane: J. Heat Transfer, 2015, vol. 137, pp. 0313011–19.CrossRef
46.
go back to reference [46] L. Arnberg, G. Chai, and L. Backerud: Mater. Sci. Eng. A, 1993, vol. 173, pp. 101–3.CrossRef [46] L. Arnberg, G. Chai, and L. Backerud: Mater. Sci. Eng. A, 1993, vol. 173, pp. 101–3.CrossRef
47.
go back to reference [47] M. Malekan and S. G. Shabestari: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2009, vol. 40, pp. 3196–3203.CrossRef [47] M. Malekan and S. G. Shabestari: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2009, vol. 40, pp. 3196–3203.CrossRef
48.
go back to reference [48] D. B. Spencer, R. Mehrabian, and M. C. Flemings: Metall. Trans., 1972, vol. 3, pp. 1925–32.CrossRef [48] D. B. Spencer, R. Mehrabian, and M. C. Flemings: Metall. Trans., 1972, vol. 3, pp. 1925–32.CrossRef
50.
go back to reference [50] A. K. Dahle and D. H. StJohn: Acta Mater., 1999, vol. 47, pp. 31–41.CrossRef [50] A. K. Dahle and D. H. StJohn: Acta Mater., 1999, vol. 47, pp. 31–41.CrossRef
Metadata
Title
Quantification of Epistemic Uncertainty in Grain Attachment Models for Equiaxed Solidification
Authors
A. Plotkowski
M. J. M. Krane
Publication date
10-02-2017
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 3/2017
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-017-0933-9

Other articles of this Issue 3/2017

Metallurgical and Materials Transactions B 3/2017 Go to the issue

Premium Partners