Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 3/2017

10.02.2017

Quantification of Epistemic Uncertainty in Grain Attachment Models for Equiaxed Solidification

verfasst von: A. Plotkowski, M. J. M. Krane

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent work has investigated various schemes for the attachment of free-floating grains in models of equiaxed solidification in multicomponent alloys. However, these models are deterministic in nature, and simply investigating their differences for a limited number of results would not constitute an adequate comparison of their predictions. Instead, the models are compared in the context of the uncertainty in the most important input parameters. This approach is especially important in light of the effort required to implement a new model. If the predictions are essentially the same, then either model will suffice, or one may be selected for ease of implementation, numerical robustness, or computational efficiency. If, however, the models are significantly different, then the most accurate should be selected. In order to investigate the effects of input uncertainty on the output of grain attachment models, the PRISM Uncertainty Quantification framework was employed. The three models investigated were a constant packing fraction (CPF) scheme, an average solid velocity method (AVM), and a continuum attachment approach. Comparisons were made between the CPF and AVM models to estimate the importance of the local velocity field and between the CPF and continuum models to determine the sensitivity of the macrosegregation to new parameters unique to the continuum model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat [1] A. Chernatynskiy, S. R. Phillpot, and R. LeSar: Annu. Rev. Mater. Res., 2013, vol. 43, pp. 157–82.CrossRef [1] A. Chernatynskiy, S. R. Phillpot, and R. LeSar: Annu. Rev. Mater. Res., 2013, vol. 43, pp. 157–82.CrossRef
2.
Zurück zum Zitat P. Marepalli, J.Y. Murthy, B. Qiu, and X. Ruan: J. Heat Transf., 2014, vol. 136, art no. 111301. P. Marepalli, J.Y. Murthy, B. Qiu, and X. Ruan: J. Heat Transf., 2014, vol. 136, art no. 111301.
3.
Zurück zum Zitat [3] P. J. Roache: Annu. Rev. Fluid Mech., 1997, vol. 29, pp. 123–60.CrossRef [3] P. J. Roache: Annu. Rev. Fluid Mech., 1997, vol. 29, pp. 123–60.CrossRef
4.
Zurück zum Zitat [4] Habib N Najm: Annu. Rev. Fluid Mech., 2009, vol. 41, pp. 35–52.CrossRef [4] Habib N Najm: Annu. Rev. Fluid Mech., 2009, vol. 41, pp. 35–52.CrossRef
5.
Zurück zum Zitat [5] R. A. Hardin, K. K. Choi, N. J. Gaul, and C. Beckermann: Int. J. Cast Met. Res., 2015, vol. 28, pp. 181–92.CrossRef [5] R. A. Hardin, K. K. Choi, N. J. Gaul, and C. Beckermann: Int. J. Cast Met. Res., 2015, vol. 28, pp. 181–92.CrossRef
6.
Zurück zum Zitat [6] K. Fezi and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 84, p. 12001.CrossRef [6] K. Fezi and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 84, p. 12001.CrossRef
7.
Zurück zum Zitat K. Fezi and M. J. M. Krane: Int. J. Cast Met. Res., 2016, Available Online. K. Fezi and M. J. M. Krane: Int. J. Cast Met. Res., 2016, Available Online.
8.
Zurück zum Zitat K. Fezi and M. J. M. Krane: J. Heat Transfer, 2016, In Press. K. Fezi and M. J. M. Krane: J. Heat Transfer, 2016, In Press.
9.
Zurück zum Zitat [9] K. Fezi and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 143, pp. 407–14.CrossRef [9] K. Fezi and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 143, pp. 407–14.CrossRef
10.
Zurück zum Zitat [10] J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22, pp. 349–61.CrossRef [10] J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22, pp. 349–61.CrossRef
11.
Zurück zum Zitat A. V. Reddy and C. Beckermann: in Mater. Process. Comput. Age II, V. R. Voller, S. P. Marsh, and N. El-Kaddah, eds., 1995, pp. 89–102. A. V. Reddy and C. Beckermann: in Mater. Process. Comput. Age II, V. R. Voller, S. P. Marsh, and N. El-Kaddah, eds., 1995, pp. 89–102.
12.
Zurück zum Zitat [12] G. D. Scott and D. M. Kilgour: J. Phys. D. Appl. Phys., 2002, vol. 2, pp. 863–66.CrossRef [12] G. D. Scott and D. M. Kilgour: J. Phys. D. Appl. Phys., 2002, vol. 2, pp. 863–66.CrossRef
13.
Zurück zum Zitat [13] C. Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2754–64.CrossRef [13] C. Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2754–64.CrossRef
14.
Zurück zum Zitat [14] C. Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2765–83.CrossRef [14] C. Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2765–83.CrossRef
15.
Zurück zum Zitat [15] C Y Wang and C. Beckermann: Metall. Trans. A, 1993, vol. 24, pp. 2787–2802.CrossRef [15] C Y Wang and C. Beckermann: Metall. Trans. A, 1993, vol. 24, pp. 2787–2802.CrossRef
16.
Zurück zum Zitat [16] A. Ludwig and M. Wu: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3673–83.CrossRef [16] A. Ludwig and M. Wu: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3673–83.CrossRef
17.
Zurück zum Zitat [17] M. Zaloznik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48, pp. 1–10.CrossRef [17] M. Zaloznik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48, pp. 1–10.CrossRef
18.
Zurück zum Zitat [18] W. D. Bennon and F. P. Incropera: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 2171–87.CrossRef [18] W. D. Bennon and F. P. Incropera: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 2171–87.CrossRef
19.
Zurück zum Zitat [19] W. D. Bennon and F. P. Incropera: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 2161–70.CrossRef [19] W. D. Bennon and F. P. Incropera: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 2161–70.CrossRef
20.
Zurück zum Zitat [20] C. J. Vreeman, M. J. M. Krane, and F. P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 677–86.CrossRef [20] C. J. Vreeman, M. J. M. Krane, and F. P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 677–86.CrossRef
21.
Zurück zum Zitat [21] C. J. Vreeman and F. P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 687–704.CrossRef [21] C. J. Vreeman and F. P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 687–704.CrossRef
22.
Zurück zum Zitat [22] J. Ni and F. P. Incropera: Int. J. Heat Mass Transf., 1995, vol. 38, pp. 1271–84.CrossRef [22] J. Ni and F. P. Incropera: Int. J. Heat Mass Transf., 1995, vol. 38, pp. 1271–84.CrossRef
23.
Zurück zum Zitat [23] J. Ni and F. P. Incropera: Int. J. Heat Mass Transf., 1995, vol. 38, pp. 1285–96.CrossRef [23] J. Ni and F. P. Incropera: Int. J. Heat Mass Transf., 1995, vol. 38, pp. 1285–96.CrossRef
24.
Zurück zum Zitat [24] C. J. Vreeman, J. D. Schloz, and M. J. M. Krane: ASME J. Heat Transf., 2002, vol. 124, p. 947.CrossRef [24] C. J. Vreeman, J. D. Schloz, and M. J. M. Krane: ASME J. Heat Transf., 2002, vol. 124, p. 947.CrossRef
25.
Zurück zum Zitat [25] I. Vusanovic and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, pp. 1–6. [25] I. Vusanovic and M. J. M. Krane: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, pp. 1–6.
26.
Zurück zum Zitat [26] A. Plotkowski and M. J. M. Krane: Appl. Math. Model., 2016, vol. 40, pp. 9212–27.CrossRef [26] A. Plotkowski and M. J. M. Krane: Appl. Math. Model., 2016, vol. 40, pp. 9212–27.CrossRef
27.
Zurück zum Zitat [27] A. Plotkowski and M. J. M. Krane: Comput. Mater. Sci., 2016, vol. 124, pp. 238–48.CrossRef [27] A. Plotkowski and M. J. M. Krane: Comput. Mater. Sci., 2016, vol. 124, pp. 238–48.CrossRef
28.
Zurück zum Zitat [28] S. V. Patankar: Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY, 1980. [28] S. V. Patankar: Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY, 1980.
29.
Zurück zum Zitat C. J. Vreeman: M.S. Thesis Purdue University, 1997. C. J. Vreeman: M.S. Thesis Purdue University, 1997.
30.
Zurück zum Zitat [30] V. R. Voller and C. R. Swaminathan: Numer. Heat Transf. Part B Fundam., 1991, vol. 19, pp. 175–89.CrossRef [30] V. R. Voller and C. R. Swaminathan: Numer. Heat Transf. Part B Fundam., 1991, vol. 19, pp. 175–89.CrossRef
31.
Zurück zum Zitat [31] C. J. Vreeman and F. P. Incropera: Numer. Heat Transf. Part B Fundam., 1999, vol. 36, pp. 1–14. [31] C. J. Vreeman and F. P. Incropera: Numer. Heat Transf. Part B Fundam., 1999, vol. 36, pp. 1–14.
32.
Zurück zum Zitat [32] A. Kumar, B. Dussoubs, M. Zaloznik, and H. Combeau: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, pp. 1–8.CrossRef [32] A. Kumar, B. Dussoubs, M. Zaloznik, and H. Combeau: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, pp. 1–8.CrossRef
33.
Zurück zum Zitat [33] M Wu and A Ludwig: Acta Mater., 2009, vol. 57, pp. 5621–31.CrossRef [33] M Wu and A Ludwig: Acta Mater., 2009, vol. 57, pp. 5621–31.CrossRef
34.
Zurück zum Zitat M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5632–44.CrossRef M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5632–44.CrossRef
35.
Zurück zum Zitat [35] M. Hunt, B. Haley, M. McLennan, M. Koslowski, J. Murthy, and A. Strachan: Comput. Phys. Commun., 2015, vol. 194, pp. 97–107.CrossRef [35] M. Hunt, B. Haley, M. McLennan, M. Koslowski, J. Murthy, and A. Strachan: Comput. Phys. Commun., 2015, vol. 194, pp. 97–107.CrossRef
36.
37.
Zurück zum Zitat [37] F. Campolongo, J. Cariboni, and A. Saltelli: Environ. Model. Softw., 2007, vol. 22, pp. 1509–18.CrossRef [37] F. Campolongo, J. Cariboni, and A. Saltelli: Environ. Model. Softw., 2007, vol. 22, pp. 1509–18.CrossRef
38.
Zurück zum Zitat [38] A. Bhattacharyya: Bull. Calcutta Math. Soc., 1943, vol. 35, pp. 99–109. [38] A. Bhattacharyya: Bull. Calcutta Math. Soc., 1943, vol. 35, pp. 99–109.
39.
Zurück zum Zitat [39] T. Kailath: IEEE Trans. Commun. Technol., 1967, vol. 15, pp. 52–60.CrossRef [39] T. Kailath: IEEE Trans. Commun. Technol., 1967, vol. 15, pp. 52–60.CrossRef
40.
Zurück zum Zitat [40] K. Fezi, A. Plotkowski, and M. J. M. Krane: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2940–51.CrossRef [40] K. Fezi, A. Plotkowski, and M. J. M. Krane: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2940–51.CrossRef
41.
Zurück zum Zitat [41] J. O. Andersson, Thomas Helander, Lars Höglund, Pingfang Shi, and Bo Sundman: Calphad Comput. Coupling Phase Diagrams Thermochem., 2002, vol. 26, pp. 273–312.CrossRef [41] J. O. Andersson, Thomas Helander, Lars Höglund, Pingfang Shi, and Bo Sundman: Calphad Comput. Coupling Phase Diagrams Thermochem., 2002, vol. 26, pp. 273–312.CrossRef
42.
Zurück zum Zitat M. Lalpoor, D. G. Eskin, D. Ruvalcaba, H. G. Fjær, A. Ten Cate, N. Ontijt, and L. Katgerman: Mater. Sci. Eng. B, 2011, vol. 528, pp. 2831–42.CrossRef M. Lalpoor, D. G. Eskin, D. Ruvalcaba, H. G. Fjær, A. Ten Cate, N. Ontijt, and L. Katgerman: Mater. Sci. Eng. B, 2011, vol. 528, pp. 2831–42.CrossRef
43.
Zurück zum Zitat W. F. Gale: Smithells Metals Reference Book, 8th ed., Elsevier, New York, 2004. W. F. Gale: Smithells Metals Reference Book, 8th ed., Elsevier, New York, 2004.
44.
Zurück zum Zitat [44] T. Iida and R. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1988. [44] T. Iida and R. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1988.
45.
Zurück zum Zitat [45] A. Plotkowski and M. J. M. Krane: J. Heat Transfer, 2015, vol. 137, pp. 0313011–19.CrossRef [45] A. Plotkowski and M. J. M. Krane: J. Heat Transfer, 2015, vol. 137, pp. 0313011–19.CrossRef
46.
Zurück zum Zitat [46] L. Arnberg, G. Chai, and L. Backerud: Mater. Sci. Eng. A, 1993, vol. 173, pp. 101–3.CrossRef [46] L. Arnberg, G. Chai, and L. Backerud: Mater. Sci. Eng. A, 1993, vol. 173, pp. 101–3.CrossRef
47.
Zurück zum Zitat [47] M. Malekan and S. G. Shabestari: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2009, vol. 40, pp. 3196–3203.CrossRef [47] M. Malekan and S. G. Shabestari: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2009, vol. 40, pp. 3196–3203.CrossRef
48.
Zurück zum Zitat [48] D. B. Spencer, R. Mehrabian, and M. C. Flemings: Metall. Trans., 1972, vol. 3, pp. 1925–32.CrossRef [48] D. B. Spencer, R. Mehrabian, and M. C. Flemings: Metall. Trans., 1972, vol. 3, pp. 1925–32.CrossRef
49.
50.
Zurück zum Zitat [50] A. K. Dahle and D. H. StJohn: Acta Mater., 1999, vol. 47, pp. 31–41.CrossRef [50] A. K. Dahle and D. H. StJohn: Acta Mater., 1999, vol. 47, pp. 31–41.CrossRef
Metadaten
Titel
Quantification of Epistemic Uncertainty in Grain Attachment Models for Equiaxed Solidification
verfasst von
A. Plotkowski
M. J. M. Krane
Publikationsdatum
10.02.2017
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 3/2017
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-017-0933-9

Weitere Artikel der Ausgabe 3/2017

Metallurgical and Materials Transactions B 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.