Skip to main content
Top
Published in: Quantum Information Processing 8/2023

01-08-2023

Quantum error correction scheme for fully-correlated noise

Authors: Chi-Kwong Li, Yuqiao Li, Diane Christine Pelejo, Sage Stanish

Published in: Quantum Information Processing | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates quantum error correction schemes for fully-correlated noise channels on an n-qubit system, where error operators take the form \(W^{\otimes n}\), with W being an arbitrary \(2\times 2\) unitary operator. In previous literature, a recursive quantum error correction scheme can be used to protect k qubits using \((k+1)\)-qubit ancilla. We implement this scheme on 3-qubit and 5-qubit channels using the IBM quantum computers, where we uncover an error in the previous paper related to the decomposition of the encoding/decoding operator into elementary quantum gates. Here, we present a modified encoding/decoding operator that can be efficiently decomposed into (a) standard gates available in the qiskit library and (b) basic gates comprised of single-qubit gates and CNOT gates. Since IBM quantum computers perform relatively better with fewer basic gates, a more efficient decomposition gives more accurate results. Our experiments highlight the importance of an efficient decomposition for the encoding/decoding operators and demonstrate the effectiveness of our proposed schemes in correcting quantum errors. Furthermore, we explore a special type of channel with error operators of the form \(\sigma _x^{\otimes n}, \sigma _y^{\otimes n}\) and \(\sigma _z^{\otimes n}\), where \(\sigma _x, \sigma _y, \sigma _z\) are the Pauli matrices. For these channels, we implement a hybrid quantum error correction scheme that protects both quantum and classical information using IBM’s quantum computers. We conduct experiments for \(n = 3, 4, 5\) and show significant improvements compared to recent work.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Zanardi, P.: Dissipation and decoherence in a quantum register. Phys. Rev. A 57, 3276 (1998)ADSCrossRef Zanardi, P.: Dissipation and decoherence in a quantum register. Phys. Rev. A 57, 3276 (1998)ADSCrossRef
4.
go back to reference Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)ADSCrossRef Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)ADSCrossRef
5.
go back to reference Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001)ADSCrossRef Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001)ADSCrossRef
6.
go back to reference Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Protecting quantum information encoded in decoherence-free states against exchange errors. Phys. Rev. A 61, 052307 (2000)ADSCrossRef Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Protecting quantum information encoded in decoherence-free states against exchange errors. Phys. Rev. A 61, 052307 (2000)ADSCrossRef
7.
go back to reference Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Decoherence-free subspaces for multiple-qubit errors: I: characterization. Phys. Review A 63, 022306 (2001)ADSMathSciNetCrossRef Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Decoherence-free subspaces for multiple-qubit errors: I: characterization. Phys. Review A 63, 022306 (2001)ADSMathSciNetCrossRef
8.
go back to reference Choi, M.-D., Kribs, D.W.: Method to find quantum noiseless subsystems. Phys. Rev. Lett. 96, 050501 (2006)ADSCrossRef Choi, M.-D., Kribs, D.W.: Method to find quantum noiseless subsystems. Phys. Rev. Lett. 96, 050501 (2006)ADSCrossRef
10.
go back to reference Fortunato, E.M., Viola, L., Pravia, M.A., Knill, E., Laflamme, R., Havel, T.F., Cory, D.G.: Exploring noiseless subsystems via nuclear magnetic resonance. Phys. Rev. A 67, 062303 (2003)ADSCrossRef Fortunato, E.M., Viola, L., Pravia, M.A., Knill, E., Laflamme, R., Havel, T.F., Cory, D.G.: Exploring noiseless subsystems via nuclear magnetic resonance. Phys. Rev. A 67, 062303 (2003)ADSCrossRef
11.
go back to reference Viola, L., Fortunato, E.M., Pravia, M.A., Knill, E., Laflamme, R., Cory, D.G.: Experimental realization of noiseless subsystems for quantum information processing. Science 293, 2059 (2001)ADSCrossRef Viola, L., Fortunato, E.M., Pravia, M.A., Knill, E., Laflamme, R., Cory, D.G.: Experimental realization of noiseless subsystems for quantum information processing. Science 293, 2059 (2001)ADSCrossRef
12.
go back to reference Lidar, D.A., Brun, T.A.: Quantum Error Correction. Cambridge University Press (2013) Lidar, D.A., Brun, T.A.: Quantum Error Correction. Cambridge University Press (2013)
13.
go back to reference Kondo, Y., Bagnasco, C., Nakahara, M.: Implementation of a simple operator-quantum-error-correction scheme. Phys. Rev. A 88, 022314 (2013)ADSCrossRef Kondo, Y., Bagnasco, C., Nakahara, M.: Implementation of a simple operator-quantum-error-correction scheme. Phys. Rev. A 88, 022314 (2013)ADSCrossRef
14.
go back to reference Byrd, M.S.: Implications of qudit superselection rules for the theory of decoherence-free subsystems. Phys. Rev. A 73, 032330 (2006)ADSMathSciNetCrossRef Byrd, M.S.: Implications of qudit superselection rules for the theory of decoherence-free subsystems. Phys. Rev. A 73, 032330 (2006)ADSMathSciNetCrossRef
15.
go back to reference Gungordu, U., Li, C.K., Nakahara, M., Poon, Y.T., Sze, N.S.: Recursive encoding and decoding of the noiseless subsystem for qudits. Phys. Rev. A 89, 042301 (2014)ADSCrossRefMATH Gungordu, U., Li, C.K., Nakahara, M., Poon, Y.T., Sze, N.S.: Recursive encoding and decoding of the noiseless subsystem for qudits. Phys. Rev. A 89, 042301 (2014)ADSCrossRefMATH
16.
go back to reference Li, C.K., Nakahara, M., Poon, Y.T., Sze, N.S., Tomita, H.: Recursive encoding and decoding of noiseless subsystem and decoherence free subspace. Phys. Rev. A 84, 044301 (2011)ADSCrossRef Li, C.K., Nakahara, M., Poon, Y.T., Sze, N.S., Tomita, H.: Recursive encoding and decoding of noiseless subsystem and decoherence free subspace. Phys. Rev. A 84, 044301 (2011)ADSCrossRef
17.
go back to reference Li, C.-K., Nakahara, M., Poon, Y.-T., Sze, N.-S.: Maximal error correction rates for collective rotation channels on qudits. Quantum Inf. Process. 14, 4039–4055 (2015)ADSMathSciNetCrossRefMATH Li, C.-K., Nakahara, M., Poon, Y.-T., Sze, N.-S.: Maximal error correction rates for collective rotation channels on qudits. Quantum Inf. Process. 14, 4039–4055 (2015)ADSMathSciNetCrossRefMATH
18.
go back to reference Yang, C.-P., Gea-Banacloche, J.: Three-qubit quantum error-correction scheme for collective decoherence. Phys. Rev. A 63, 022311 (2001)ADSMathSciNetCrossRef Yang, C.-P., Gea-Banacloche, J.: Three-qubit quantum error-correction scheme for collective decoherence. Phys. Rev. A 63, 022311 (2001)ADSMathSciNetCrossRef
19.
go back to reference Li, C.K., Nakahara, M., Poon, Y.T., Sze, N.K., Tomita, H.: Efficient quantum error correction for fully correlated noise. Phys. Lett. A 375, 3255–3258 (2011)ADSCrossRefMATH Li, C.K., Nakahara, M., Poon, Y.T., Sze, N.K., Tomita, H.: Efficient quantum error correction for fully correlated noise. Phys. Lett. A 375, 3255–3258 (2011)ADSCrossRefMATH
20.
go back to reference Li, C.K., Lyles, S., Poon, Y.T.: Error correction schemes for fully correlated quantum channels protecting both quantum and classical information. Quant. Inf. Process. 19(5), 153 (2020)ADSMathSciNetCrossRefMATH Li, C.K., Lyles, S., Poon, Y.T.: Error correction schemes for fully correlated quantum channels protecting both quantum and classical information. Quant. Inf. Process. 19(5), 153 (2020)ADSMathSciNetCrossRefMATH
Metadata
Title
Quantum error correction scheme for fully-correlated noise
Authors
Chi-Kwong Li
Yuqiao Li
Diane Christine Pelejo
Sage Stanish
Publication date
01-08-2023
Publisher
Springer US
Published in
Quantum Information Processing / Issue 8/2023
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04009-x

Other articles of this Issue 8/2023

Quantum Information Processing 8/2023 Go to the issue