Skip to main content
Top
Published in: Quantum Information Processing 8/2023

01-08-2023

Machine learning with neural networks for parameter optimization in twin-field quantum key distribution

Authors: Jia-Le Kang, Ming-Hui Zhang, Xiao-Peng Liu, Jia-Hui Xie

Published in: Quantum Information Processing | Issue 8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Twin-field quantum key distribution (TF-QKD) has the advantage of beating the rate-loss limit (PLOB bound) for a repeaterless quantum key distribution (QKD) system. In practice, parameter optimization is of great significance in maximizing the secret key rate. Nevertheless, traditional local search algorithms (LSA) are often time-consuming and limited by the computing capabilities of devices. In this paper, we use the machine learning method instead of LSA to directly predict the optimal parameters for TF-QKD system. Specifically, three neural networks, namely back propagation neural network, radial basis function neural network, and generalized regression neural network, are trained and evaluated. The performance of neural networks and LSA in optimizing parameters is discussed and analyzed in this study. It is proved that the performance of machine learning-based prediction method is comparable to LSA, but the calculation time is shortened by 6 orders of magnitude. Furthermore, a comprehensive comparison of three networks in terms of prediction accuracy and time consumption is conducted, serving as a guide for selecting the most suitable network to optimize parameters in a practical TF-QKD system with different optimization requirements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lo, H.-K., Chau, H.-F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)ADS Lo, H.-K., Chau, H.-F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)ADS
2.
go back to reference Shor, P.-W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)ADS Shor, P.-W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)ADS
3.
go back to reference Scarani, V., Helle, B.-P., Cerf, N.-J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)ADS Scarani, V., Helle, B.-P., Cerf, N.-J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)ADS
4.
go back to reference Brassard, G., Bennett, C.-H.: Quantum cryptography: public key distribution and coin tossing, pp. 75–179 (1984) Brassard, G., Bennett, C.-H.: Quantum cryptography: public key distribution and coin tossing, pp. 75–179 (1984)
5.
go back to reference Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)ADS Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)ADS
6.
go back to reference Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595–604 (2014)ADS Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595–604 (2014)ADS
7.
go back to reference Ribeiro, J., Murta, G., Wehner, S.: Fully device-independent conference key agreement. Phys. Rev. A 97(2), 022307 (2018)ADS Ribeiro, J., Murta, G., Wehner, S.: Fully device-independent conference key agreement. Phys. Rev. A 97(2), 022307 (2018)ADS
8.
go back to reference Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y.-Q., Huang, M.-Q., Zhang, W.-J., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)ADS Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y.-Q., Huang, M.-Q., Zhang, W.-J., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)ADS
9.
go back to reference Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.-J., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 190502 (2018)ADS Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.-J., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 190502 (2018)ADS
10.
go back to reference Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)ADS Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)ADS
11.
go back to reference Lo, H.-K., Ma, X.-F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)ADS Lo, H.-K., Ma, X.-F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)ADS
12.
go back to reference Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)ADS Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)ADS
13.
go back to reference Hayashi, M.: General theory for decoy-state quantum key distribution with an arbitrary number of intensities. New J. Phys. 9(8), 284 (2007)ADS Hayashi, M.: General theory for decoy-state quantum key distribution with an arbitrary number of intensities. New J. Phys. 9(8), 284 (2007)ADS
14.
go back to reference Hayashi, M.: Optimal decoy intensity for decoy quantum key distribution. New J. Phys. 49(16), 165301 (2016)MathSciNetMATH Hayashi, M.: Optimal decoy intensity for decoy quantum key distribution. New J. Phys. 49(16), 165301 (2016)MathSciNetMATH
15.
go back to reference Ma, X.-F., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)ADS Ma, X.-F., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)ADS
16.
go back to reference Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 110501 (2011)ADS Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 110501 (2011)ADS
17.
go back to reference Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93(4), 042324 (2016)ADS Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93(4), 042324 (2016)ADS
18.
go back to reference da Silva, T.F., Vitoreti, D., Xavier, G.-B., do Amaral, G.-C., Temporão, G.-P., von der Weid, J.-P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88(5), 052303 (2013)ADS da Silva, T.F., Vitoreti, D., Xavier, G.-B., do Amaral, G.-C., Temporão, G.-P., von der Weid, J.-P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88(5), 052303 (2013)ADS
19.
go back to reference Lucamarini, M., Yuan, Z.-L., Dynes, J.-F., Shields, A.-J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 1476–4687 (2018) Lucamarini, M., Yuan, Z.-L., Dynes, J.-F., Shields, A.-J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 1476–4687 (2018)
20.
go back to reference Federico Grasselli, M.-C.: Practical decoy-state method for twin-field quantum key distribution. New J. Phys. 21, 073001 (2019)MathSciNet Federico Grasselli, M.-C.: Practical decoy-state method for twin-field quantum key distribution. New J. Phys. 21, 073001 (2019)MathSciNet
21.
go back to reference Cui, C.-H., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11(3), 034053 (2019)ADS Cui, C.-H., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11(3), 034053 (2019)ADS
22.
go back to reference Maeda, K., Sasaki, T., Koashi, M.: Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit. Nat. Commun. 10(1), 1723–2041 (2019) Maeda, K., Sasaki, T., Koashi, M.: Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit. Nat. Commun. 10(1), 1723–2041 (2019)
23.
go back to reference Ma, X.-F., Zeng, P., Zhou, H.-Y.: Phase-matching quantum key distribution. Phys. Rev. X 8(3), 031043 (2018) Ma, X.-F., Zeng, P., Zhou, H.-Y.: Phase-matching quantum key distribution. Phys. Rev. X 8(3), 031043 (2018)
24.
go back to reference Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98(6), 062323 (2018)ADS Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98(6), 062323 (2018)ADS
25.
go back to reference Xie, Y.-M., Lu, Y.-S., Weng, C.-X., Cao, X.-Y., Jia, Z.-Y., Bao, Y., Wang, Y., Fu, Y., Yin, H.-L., Chen, Z.-B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3(2), 020315 (2022)ADS Xie, Y.-M., Lu, Y.-S., Weng, C.-X., Cao, X.-Y., Jia, Z.-Y., Bao, Y., Wang, Y., Fu, Y., Yin, H.-L., Chen, Z.-B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3(2), 020315 (2022)ADS
26.
go back to reference Cui, W., Song, Z., Huang, G.-Q., Jiao, R.-Z.: Satellite-based phase-matching quantum key distribution. Quantum Inf. Process. 21, 313 (2022)ADSMATH Cui, W., Song, Z., Huang, G.-Q., Jiao, R.-Z.: Satellite-based phase-matching quantum key distribution. Quantum Inf. Process. 21, 313 (2022)ADSMATH
27.
go back to reference Park, J.-Y., Lee, J.-Y., Heo, J.: Improved statistical fluctuation analysis for twin-field quantum key distribution. Quantum Inf. Process. 20, 127 (2021)ADSMathSciNetMATH Park, J.-Y., Lee, J.-Y., Heo, J.: Improved statistical fluctuation analysis for twin-field quantum key distribution. Quantum Inf. Process. 20, 127 (2021)ADSMathSciNetMATH
28.
go back to reference Zhou, X.-Y., Zhang, C.-H., Zhang, C.-M., Wang, Q.: Asymmetric sending or not sending twin-field quantum key distribution in practice. Phys. Rev. A 99(6), 062316 (2019)ADS Zhou, X.-Y., Zhang, C.-H., Zhang, C.-M., Wang, Q.: Asymmetric sending or not sending twin-field quantum key distribution in practice. Phys. Rev. A 99(6), 062316 (2019)ADS
29.
go back to reference Lu, Y.-F., Wang, Y., Jiang, M.-S., Liu, F., Zhang, X.-X., Bao, W.-S.: Finite-key analysis of sending-or-not-sending twin-field quantum key distribution with intensity fluctuations. Quantum Inf. Process. 20(135), 1332–1573 (2021)MathSciNetMATH Lu, Y.-F., Wang, Y., Jiang, M.-S., Liu, F., Zhang, X.-X., Bao, W.-S.: Finite-key analysis of sending-or-not-sending twin-field quantum key distribution with intensity fluctuations. Quantum Inf. Process. 20(135), 1332–1573 (2021)MathSciNetMATH
30.
go back to reference Wang, Y., Bao, W.-S., Zhou, C., Jiang, M.-S., Li, H.-W.: Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources. Phys. Rev. A 94(8), 032335 (2016)ADS Wang, Y., Bao, W.-S., Zhou, C., Jiang, M.-S., Li, H.-W.: Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources. Phys. Rev. A 94(8), 032335 (2016)ADS
31.
go back to reference Wang, Y., Bao, W.-S., Li, H.-W., Zhou, C., Li, Y.: Finite-key analysis for one-sided device-independent quantum key distribution. Phys. Rev. A 88(6), 052322 (2013)ADS Wang, Y., Bao, W.-S., Li, H.-W., Zhou, C., Li, Y.: Finite-key analysis for one-sided device-independent quantum key distribution. Phys. Rev. A 88(6), 052322 (2013)ADS
32.
go back to reference Park, J., Heo, J.: Finite-key-size effect in asymmetric twin-field quantum key distribution, pp. 265–267 (2021) Park, J., Heo, J.: Finite-key-size effect in asymmetric twin-field quantum key distribution, pp. 265–267 (2021)
33.
go back to reference Tsurumaru, T., Soujaeff, A., Takeuchi, S.: Exact minimum and maximum of yield with a finite number of decoy light intensities. Phys. Rev. A 77(2), 022319 (2008)ADSMATH Tsurumaru, T., Soujaeff, A., Takeuchi, S.: Exact minimum and maximum of yield with a finite number of decoy light intensities. Phys. Rev. A 77(2), 022319 (2008)ADSMATH
34.
go back to reference Grasselli, F., Kampermann, H., Bruß, D.: Finite-key effects in multipartite quantum key distribution protocols. New J. Phys. 20(11), 113014 (2018)ADS Grasselli, F., Kampermann, H., Bruß, D.: Finite-key effects in multipartite quantum key distribution protocols. New J. Phys. 20(11), 113014 (2018)ADS
35.
go back to reference Xu, F.-H., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052333 (2014)ADS Xu, F.-H., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052333 (2014)ADS
36.
go back to reference Liu, J.-Y., Ding, H.-J., Zhang, C.-M., Xie, S.-P., Wang, Q.: Practical phase-modulation stabilization in quantum key distribution via machine learning. Phys. Rev. Appl. 12(1), 014059 (2019)ADS Liu, J.-Y., Ding, H.-J., Zhang, C.-M., Xie, S.-P., Wang, Q.: Practical phase-modulation stabilization in quantum key distribution via machine learning. Phys. Rev. Appl. 12(1), 014059 (2019)ADS
37.
go back to reference Wang, W.-Y., Lo, H.-K.: Simple method for asymmetric twin-field quantum key distribution. New J. Phys. 22(1), 013020 (2020)ADSMathSciNet Wang, W.-Y., Lo, H.-K.: Simple method for asymmetric twin-field quantum key distribution. New J. Phys. 22(1), 013020 (2020)ADSMathSciNet
38.
go back to reference Kwek, L.-C., Cao, L., Luo, W., Wang, Y.-X., Sun, S.-H., Wang, X.-B., Liu, A.-Q.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)ADS Kwek, L.-C., Cao, L., Luo, W., Wang, Y.-X., Sun, S.-H., Wang, X.-B., Liu, A.-Q.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)ADS
39.
go back to reference Lu, F.-Y., Yin, Z.-Q., Wang, C., Cui, C.-H., Teng, J., Wang, S., Chen, W., Huang, W., Xu, B.-J., Guo, G.-C., et al.: Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network. JOSA B 36(3), 92–98 (2019) Lu, F.-Y., Yin, Z.-Q., Wang, C., Cui, C.-H., Teng, J., Wang, S., Chen, W., Huang, W., Xu, B.-J., Guo, G.-C., et al.: Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network. JOSA B 36(3), 92–98 (2019)
40.
go back to reference Lu, W.-Z., Huang, C.-H., Hou, K., Shi, L.-T., Zhao, H.-H., Li, Z.-M., Qiu, J.-F.: Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution. Quantum Inf. Process. 17(5), 1–14 (2018)ADSMathSciNetMATH Lu, W.-Z., Huang, C.-H., Hou, K., Shi, L.-T., Zhao, H.-H., Li, Z.-M., Qiu, J.-F.: Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution. Quantum Inf. Process. 17(5), 1–14 (2018)ADSMathSciNetMATH
41.
go back to reference Liu, W.-Q., Huang, P., Peng, J.-Y., Fan, J.-P., Zeng, G.-H.: Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution. Phys. Rev. A 97(2), 022316 (2018)ADS Liu, W.-Q., Huang, P., Peng, J.-Y., Fan, J.-P., Zeng, G.-H.: Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution. Phys. Rev. A 97(2), 022316 (2018)ADS
42.
go back to reference Wang, W.-Y., Lo, H.-K.: Machine learning for optimal parameter prediction in quantum key distribution. Phys. Rev. A 100(6), 062334 (2019)ADS Wang, W.-Y., Lo, H.-K.: Machine learning for optimal parameter prediction in quantum key distribution. Phys. Rev. A 100(6), 062334 (2019)ADS
43.
go back to reference Qin, L., Gang, X., Hai, Z., Ying, G.: Multi-label learning for improving discretely-modulated continuous-variable quantum key distribution. New J. Phys. 22(8), 083086 (2020) Qin, L., Gang, X., Hai, Z., Ying, G.: Multi-label learning for improving discretely-modulated continuous-variable quantum key distribution. New J. Phys. 22(8), 083086 (2020)
44.
go back to reference Ding, H.-J., Liu, J.-Y., Zhang, C.-M., Wang, Q.: Predicting optimal parameters with random forest for quantum key distribution. Quantum Inf. Process. 19(60), 1332–1573 (2020)MathSciNetMATH Ding, H.-J., Liu, J.-Y., Zhang, C.-M., Wang, Q.: Predicting optimal parameters with random forest for quantum key distribution. Quantum Inf. Process. 19(60), 1332–1573 (2020)MathSciNetMATH
45.
go back to reference Ren, Z.-A., Chen, Y.-P., Liu, J.-Y., Ding, H.-J., Wang, Q.: Implementation of machine learning in quantum key distributions. IEEE Commun. Lett. 25(3), 940–944 (2021) Ren, Z.-A., Chen, Y.-P., Liu, J.-Y., Ding, H.-J., Wang, Q.: Implementation of machine learning in quantum key distributions. IEEE Commun. Lett. 25(3), 940–944 (2021)
46.
go back to reference Grasselli, F., Navarrete, Á., Curty, M.: Asymmetric twin-field quantum key distribution. New J. Phys. 21(11), 113032 (2019)ADSMathSciNet Grasselli, F., Navarrete, Á., Curty, M.: Asymmetric twin-field quantum key distribution. New J. Phys. 21(11), 113032 (2019)ADSMathSciNet
47.
go back to reference Liu, Y., Yu, Z.-W., Zhang, W.-J., Guan, J.-Y., Chen, J.-P., Zhang, C., Hu, X.-L., Li, H., Jiang, C., Lin, J., Chen, T.-Y., You, L.-X., Wang, Z., Wang, X.-B., Zhang, Q., Pan, J.-W.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123(10), 100505 (2019)ADS Liu, Y., Yu, Z.-W., Zhang, W.-J., Guan, J.-Y., Chen, J.-P., Zhang, C., Hu, X.-L., Li, H., Jiang, C., Lin, J., Chen, T.-Y., You, L.-X., Wang, Z., Wang, X.-B., Zhang, Q., Pan, J.-W.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123(10), 100505 (2019)ADS
48.
go back to reference Minder, M., Pittaluga, M., Roberts, G.-L., Lucamarini, M., Dynes, J., Yuan, Z., Shields, A.-J.: Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 13(5), 334–338 (2019)ADS Minder, M., Pittaluga, M., Roberts, G.-L., Lucamarini, M., Dynes, J., Yuan, Z., Shields, A.-J.: Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 13(5), 334–338 (2019)ADS
49.
go back to reference Wang, S., He, D.-Y., Yin, Z.-Q., Lu, F.-Y., Cui, C.-H., Chen, W., Zhou, Z., Guo, G.-C., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9(2), 021046 (2019) Wang, S., He, D.-Y., Yin, Z.-Q., Lu, F.-Y., Cui, C.-H., Chen, W., Zhou, Z., Guo, G.-C., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9(2), 021046 (2019)
50.
go back to reference Rumelhart, D.-E., Hinton, G.-E., Williams, R.-J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)ADSMATH Rumelhart, D.-E., Hinton, G.-E., Williams, R.-J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)ADSMATH
51.
go back to reference Yang, S.-Y., Kwon, O., Park, Y., Chung, H., Kim, H., Park, S.-Y., Choi, I.-G., Yeo, H.: Application of neural networks for classifying softwood species using near infrared spectroscopy. J. Near Infrared Spectrosc. 28(5), 298–307 (2020)ADS Yang, S.-Y., Kwon, O., Park, Y., Chung, H., Kim, H., Park, S.-Y., Choi, I.-G., Yeo, H.: Application of neural networks for classifying softwood species using near infrared spectroscopy. J. Near Infrared Spectrosc. 28(5), 298–307 (2020)ADS
Metadata
Title
Machine learning with neural networks for parameter optimization in twin-field quantum key distribution
Authors
Jia-Le Kang
Ming-Hui Zhang
Xiao-Peng Liu
Jia-Hui Xie
Publication date
01-08-2023
Publisher
Springer US
Published in
Quantum Information Processing / Issue 8/2023
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04063-5

Other articles of this Issue 8/2023

Quantum Information Processing 8/2023 Go to the issue