Skip to main content
Top
Published in: Quantum Information Processing 5/2019

01-05-2019

Quantum identity authentication in the orthogonal-state-encoding QKD system

Authors: Bin Liu, Zhifeng Gao, Di Xiao, Wei Huang, Xingbin Liu, Bingjie Xu

Published in: Quantum Information Processing | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As is known, quantum key distribution could achieve information-theoretical security under several basic requirements, one of which is reliable identity authentications between the participants. Compared with classical identity authentication, quantum identity authentication (QIA) is considered to be more secure and more efficient to combine with quantum key distribution (QKD), and therefore, more and more scholars are involved in the study of QIA. During the last 3 decades, various types of QKD protocols have been proposed utilizing different kinds of quantum technologies. One of the most special QKD protocols is the orthogonal-state-encoding QKD protocol proposed by Goldenberg and Vaidman (Phys Rev Lett 75:1239–1243, 1995), which is usually called GV95 protocol. Almost all of the QKD protocols employ nonorthogonal states to prevent and detect eavesdropping, and the most famous exception is GV95. In this paper, we present a QIA protocol based on the GV95 technology, which can be performed in a revised circuit of the GV95 protocol. And we also analyze the security of both Alice’s and Bob’s identities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE, New York (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE, New York (1984)
5.
go back to reference Sun, Y., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Robust variations of the Bennett–Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)ADSCrossRef Sun, Y., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Robust variations of the Bennett–Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)ADSCrossRef
6.
go back to reference Song, T.-T., Wen, Q.-Y., Guo, F.-Z., Tan, X.-Q.: Finite-key analysis for measurement-device independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)ADSCrossRef Song, T.-T., Wen, Q.-Y., Guo, F.-Z., Tan, X.-Q.: Finite-key analysis for measurement-device independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)ADSCrossRef
7.
go back to reference Lin, S., Guo, G.-D., et al.: Quantum key distribution: defeating collective noise without reducing efficiency. Quantum Inf. Comput. 14, 845–856 (2014)MathSciNet Lin, S., Guo, G.-D., et al.: Quantum key distribution: defeating collective noise without reducing efficiency. Quantum Inf. Comput. 14, 845–856 (2014)MathSciNet
8.
go back to reference Li, Y.-B.: Analysis of counterfactual quantum key distribution using error correcting theory. Quantum Inf. Process. 13, 2325–2342 (2014)ADSMathSciNetCrossRef Li, Y.-B.: Analysis of counterfactual quantum key distribution using error correcting theory. Quantum Inf. Process. 13, 2325–2342 (2014)ADSMathSciNetCrossRef
9.
go back to reference Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRef Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRef
11.
go back to reference Yang, Y.-G., Wen, Q.-Y., Zhang, X.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Phys. Mech. Astron. 51, 321–327 (2008)ADSCrossRef Yang, Y.-G., Wen, Q.-Y., Zhang, X.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Phys. Mech. Astron. 51, 321–327 (2008)ADSCrossRef
12.
go back to reference Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Security of quantum secret sharing with two-particle entanglement against individual attacks. Quantum Inf. Comput. 9, 0765–0772 (2009)MathSciNetMATH Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Security of quantum secret sharing with two-particle entanglement against individual attacks. Quantum Inf. Comput. 9, 0765–0772 (2009)MathSciNetMATH
13.
go back to reference Lin, S., Wen, Q.-Y., Qin, S.-J., et al.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)ADSCrossRef Lin, S., Wen, Q.-Y., Qin, S.-J., et al.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)ADSCrossRef
14.
go back to reference Wang, T.-Y., Wen, Q.-Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11, 0434–0443 (2011)MathSciNet Wang, T.-Y., Wen, Q.-Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11, 0434–0443 (2011)MathSciNet
15.
go back to reference Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef
16.
go back to reference Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRef Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRef
17.
go back to reference Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef
18.
go back to reference Lin, S., Wen, Q.-Y., Zhu, F.-C.: Quantum secure direct communication with x-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRef Lin, S., Wen, Q.-Y., Zhu, F.-C.: Quantum secure direct communication with x-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRef
19.
go back to reference Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)ADSCrossRef Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)ADSCrossRef
20.
go back to reference Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)ADSCrossRef Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)ADSCrossRef
22.
go back to reference Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRef Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRef
23.
go back to reference Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum 21(3), 6600111 (2015) Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum 21(3), 6600111 (2015)
24.
go back to reference Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)CrossRef Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)CrossRef
25.
go back to reference Wei, C.-Y., Cai, X.-Q., Liu, B., Wang, T.-Y., Gao, F.: A generic construction of quantum-oblivious-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)MathSciNetCrossRef Wei, C.-Y., Cai, X.-Q., Liu, B., Wang, T.-Y., Gao, F.: A generic construction of quantum-oblivious-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)MathSciNetCrossRef
26.
go back to reference Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22, 265 (1981)MathSciNetCrossRef Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22, 265 (1981)MathSciNetCrossRef
27.
go back to reference Dusek, M., Haderka, O., Hendrych, M., Myska, R.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)ADSCrossRef Dusek, M., Haderka, O., Hendrych, M., Myska, R.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)ADSCrossRef
28.
go back to reference Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)ADSCrossRef Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)ADSCrossRef
29.
go back to reference Zhang, Z.-S., Zeng, G.-H., Zhou, N.-R., Xiong, J.: Quantum identity authentication based on ping–pong technique for photons. Phys. Lett. A 356, 199–205 (2006)ADSCrossRef Zhang, Z.-S., Zeng, G.-H., Zhou, N.-R., Xiong, J.: Quantum identity authentication based on ping–pong technique for photons. Phys. Lett. A 356, 199–205 (2006)ADSCrossRef
30.
go back to reference Shi, B.-S., Li, J., Liu, J.-M., Fan, X.-F., Guo, G.-C.: Quantum key distribution and quantum authentication based on entangled state. Phys. Lett. A 281, 83–87 (2001)ADSMathSciNetCrossRef Shi, B.-S., Li, J., Liu, J.-M., Fan, X.-F., Guo, G.-C.: Quantum key distribution and quantum authentication based on entangled state. Phys. Lett. A 281, 83–87 (2001)ADSMathSciNetCrossRef
31.
go back to reference Yuan, H., Liu, Y.-M., Pan, G.-Z., Zhang, G., et al.: Quantum identity authentication based on ping–pong technique without entanglements. Quantum Inf. Process. 13, 2535–2549 (2014)ADSMathSciNetCrossRef Yuan, H., Liu, Y.-M., Pan, G.-Z., Zhang, G., et al.: Quantum identity authentication based on ping–pong technique without entanglements. Quantum Inf. Process. 13, 2535–2549 (2014)ADSMathSciNetCrossRef
32.
go back to reference Ma, H.-X., Huang, P., Bao, W.-S., et al.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15, 2605–2620 (2016)ADSMathSciNetCrossRef Ma, H.-X., Huang, P., Bao, W.-S., et al.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15, 2605–2620 (2016)ADSMathSciNetCrossRef
33.
go back to reference Liao, L.-X., Peng, X.-Q., Shi, J.-J., et al.: Graph state-based quantum authentication scheme. Int. J. Mod. Phys. B 31, 1750067 (2017)ADSMathSciNetCrossRef Liao, L.-X., Peng, X.-Q., Shi, J.-J., et al.: Graph state-based quantum authentication scheme. Int. J. Mod. Phys. B 31, 1750067 (2017)ADSMathSciNetCrossRef
34.
go back to reference Hong, C.-H., Heo, J., Jang, J.-G.: Quantum identity authentication with single photon. Quantum Inf. Process. 16, UNSP 236 (2017) Hong, C.-H., Heo, J., Jang, J.-G.: Quantum identity authentication with single photon. Quantum Inf. Process. 16, UNSP 236 (2017)
35.
go back to reference Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)ADSCrossRef Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)ADSCrossRef
36.
go back to reference Wang, J., Zhang, Q., Tang, C.-J.: Multiparty simultaneous quantum identity authentication based on entanglement swapping. Chin. Phys. Lett. 23, 2360–2363 (2006)ADSCrossRef Wang, J., Zhang, Q., Tang, C.-J.: Multiparty simultaneous quantum identity authentication based on entanglement swapping. Chin. Phys. Lett. 23, 2360–2363 (2006)ADSCrossRef
37.
go back to reference Niu, P.-H., Yuan, C., Li, Chong: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 302–312 (2016)MathSciNetCrossRef Niu, P.-H., Yuan, C., Li, Chong: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. 55, 302–312 (2016)MathSciNetCrossRef
38.
go back to reference Xu, S.-W., Sun, Y., Lin, S.: Quantum private query based on single-photon interference. Quantum Inf. Process. 15, 3301–3310 (2016)ADSMathSciNetCrossRef Xu, S.-W., Sun, Y., Lin, S.: Quantum private query based on single-photon interference. Quantum Inf. Process. 15, 3301–3310 (2016)ADSMathSciNetCrossRef
39.
go back to reference Shimizu, K., Imoto, N.: Single-photon-interference communication equivalent to Bell-state-basis cryptographic quantum communication. Phys. Rev. A 62, 054303 (2000)ADSCrossRef Shimizu, K., Imoto, N.: Single-photon-interference communication equivalent to Bell-state-basis cryptographic quantum communication. Phys. Rev. A 62, 054303 (2000)ADSCrossRef
40.
go back to reference Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. 16, UNSP 180 (2017) Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. 16, UNSP 180 (2017)
41.
go back to reference Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1, 238–278 (2009)ADSCrossRef Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1, 238–278 (2009)ADSCrossRef
Metadata
Title
Quantum identity authentication in the orthogonal-state-encoding QKD system
Authors
Bin Liu
Zhifeng Gao
Di Xiao
Wei Huang
Xingbin Liu
Bingjie Xu
Publication date
01-05-2019
Publisher
Springer US
Published in
Quantum Information Processing / Issue 5/2019
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2255-0

Other articles of this Issue 5/2019

Quantum Information Processing 5/2019 Go to the issue