Skip to main content
Top
Published in: Quantum Information Processing 7/2017

01-07-2017

Quantum private comparison employing single-photon interference

Authors: Bin Liu, Di Xiao, Wei Huang, Heng-Yue Jia, Ting-Ting Song

Published in: Quantum Information Processing | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As a typical quantum cryptographic task between distrustful participants, quantum private comparison (QPC) has attracted a lot of attention in recent years. Here we propose two QPC protocols employing single-photon interference, a typical and interesting technology for quantum communications. Compared with the previous QPC protocols employing normal single states or entangled states, the proposed protocols achieve lower communication complexity utilizing the characteristics of single-photon interference. And we also proved the security of the proposed protocols in theory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Single-photon interference is a typical and important technology of quantum communication. Utilizing such technology, people designed many interesting protocols, for example, the first QKD protocol by orthogonal state encoding [6], the counterfactual QKD protocol where the secret is generated when no photons have been transmitted from one participant to the other [7], the QKD protocol without monitoring signal disturbance [8], and so on [24, 52].
 
Literature
1.
go back to reference Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134 (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134 (1994)
2.
go back to reference “Quantum Chaos: After a Failed Speed Test, the D-Wave Debate Continues”. Scientific American. 2014-06-19 “Quantum Chaos: After a Failed Speed Test, the D-Wave Debate Continues”. Scientific American. 2014-06-19
3.
go back to reference Gisin, N., Ribordy, G.G., Tittle, W.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRef Gisin, N., Ribordy, G.G., Tittle, W.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRef
4.
go back to reference Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal, Bangalore, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal, Bangalore, pp. 175–179 (1984)
8.
go back to reference Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantumkey distribution protocol without monitoring signal disturbance. Nature 509, 475–479 (2014)ADSCrossRef Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantumkey distribution protocol without monitoring signal disturbance. Nature 509, 475–479 (2014)ADSCrossRef
9.
go back to reference Liu, B., Gao, F., Qin, S.-J., et al.: Choice of measurement as the secret. Phys. Rev. A 89, 042318 (2014)ADSCrossRef Liu, B., Gao, F., Qin, S.-J., et al.: Choice of measurement as the secret. Phys. Rev. A 89, 042318 (2014)ADSCrossRef
10.
go back to reference Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef
11.
go back to reference Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRef Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRef
12.
go back to reference Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef
13.
go back to reference Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)ADSCrossRef Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)ADSCrossRef
14.
go back to reference Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)ADSCrossRef Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)ADSCrossRef
15.
go back to reference Malaney, R.A.: Location-dependent communications using quantum entanglement. Phys. Rev. A 81, 042319 (2010)ADSCrossRef Malaney, R.A.: Location-dependent communications using quantum entanglement. Phys. Rev. A 81, 042319 (2010)ADSCrossRef
16.
go back to reference Buhrman, H., et al.: Position-based quantum cryptography: impossibility and constructions. In: Rogaway P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 429–446. Springer, Heidelberg (2011). Full version is arXiv:1009.2490v4 [quant-ph] Buhrman, H., et al.: Position-based quantum cryptography: impossibility and constructions. In: Rogaway P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 429–446. Springer, Heidelberg (2011). Full version is arXiv:​1009.​2490v4 [quant-ph]
18.
go back to reference Gao, F., Liu, B., Wen, Q.-Y.: Quantum position verification in bounded-attack-frequency model. Sci. China Phys. Mech. Astron. 59, 110331 (2016) Gao, F., Liu, B., Wen, Q.-Y.: Quantum position verification in bounded-attack-frequency model. Sci. China Phys. Mech. Astron. 59, 110331 (2016)
19.
go back to reference Nayak, A.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67, 012304–012314 (2003)ADSCrossRef Nayak, A.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67, 012304–012314 (2003)ADSCrossRef
20.
go back to reference Barrett, J., Massar, S.: Quantum coin tossing and bit-string generation in the presence of noise. Phys. Rev. A 69(2), 577–580 (2004)CrossRef Barrett, J., Massar, S.: Quantum coin tossing and bit-string generation in the presence of noise. Phys. Rev. A 69(2), 577–580 (2004)CrossRef
22.
go back to reference Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRef Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRef
23.
go back to reference Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 6600111 (2015) Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 6600111 (2015)
24.
go back to reference Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)CrossRef Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)CrossRef
25.
go back to reference Liu, B., Gao, F., Huang, W., Li, D., Wen, Q.-Y.: Controlling the key by choosing the detection bits in quantum cryptographic protocols. Sci. China Inf. Sci. 58(11), 112110 (2015)MathSciNet Liu, B., Gao, F., Huang, W., Li, D., Wen, Q.-Y.: Controlling the key by choosing the detection bits in quantum cryptographic protocols. Sci. China Inf. Sci. 58(11), 112110 (2015)MathSciNet
26.
go back to reference Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42, 055305 (2009)ADSMathSciNetCrossRefMATH Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42, 055305 (2009)ADSMathSciNetCrossRefMATH
27.
28.
go back to reference Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1161–1165 (2009) Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1161–1165 (2009)
29.
go back to reference Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)ADSCrossRef Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)ADSCrossRef
30.
go back to reference Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)MathSciNetCrossRefMATH Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)MathSciNetCrossRefMATH
31.
go back to reference Chang, C.-H., Hwang, T., Gope, P.: An efficient quantum private comparison of equality over collective-noise channels. Int. J. Theor. Phys. 55(4), 2125-38 (2016)CrossRefMATH Chang, C.-H., Hwang, T., Gope, P.: An efficient quantum private comparison of equality over collective-noise channels. Int. J. Theor. Phys. 55(4), 2125-38 (2016)CrossRefMATH
32.
go back to reference Chen, X.-B., Dou, Z., Xu, G., Wang, C., Yang, Y.X.: A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf. Process. 13(1), 85–100 (2014)ADSCrossRefMATH Chen, X.-B., Dou, Z., Xu, G., Wang, C., Yang, Y.X.: A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf. Process. 13(1), 85–100 (2014)ADSCrossRefMATH
33.
go back to reference Chen, X.-B., Su, Y., Niu, X.-X., Yang, Y.-X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)ADSCrossRefMATH Chen, X.-B., Su, Y., Niu, X.-X., Yang, Y.-X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)ADSCrossRefMATH
34.
go back to reference Guo, F.-Z., Gao, F., Qin, S.-J., Zhang, J., Wen, X.-Y.: Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013)ADSMathSciNetCrossRefMATH Guo, F.-Z., Gao, F., Qin, S.-J., Zhang, J., Wen, X.-Y.: Quantum private comparison protocol based on entanglement swapping of d-level Bell states. Quantum Inf. Process. 12(8), 2793–2802 (2013)ADSMathSciNetCrossRefMATH
35.
go back to reference He, G.P.: Comment on quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14(6), 2301–2305 (2015)ADSCrossRef He, G.P.: Comment on quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14(6), 2301–2305 (2015)ADSCrossRef
36.
go back to reference Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14(11), 4225–4235 (2015)ADSMathSciNetCrossRefMATH Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14(11), 4225–4235 (2015)ADSMathSciNetCrossRefMATH
37.
go back to reference Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using GHZ states. Int. J. Theor. Phys. 55(6), 2969–2976 (2016)CrossRefMATH Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using GHZ states. Int. J. Theor. Phys. 55(6), 2969–2976 (2016)CrossRefMATH
38.
go back to reference Huang, W., Wen, Q.-Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)ADSCrossRef Huang, W., Wen, Q.-Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)ADSCrossRef
39.
go back to reference Ji, S., F., Wang, W.J., Liu, Yuan, X.M.: Twice-Hadamard-CNOT attack on Li et al.’s fault-tolerant quantum private comparison and the improved scheme. Front. Phys. 10(2), 192–197 (2015)CrossRef Ji, S., F., Wang, W.J., Liu, Yuan, X.M.: Twice-Hadamard-CNOT attack on Li et al.’s fault-tolerant quantum private comparison and the improved scheme. Front. Phys. 10(2), 192–197 (2015)CrossRef
40.
go back to reference Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)ADSMathSciNetCrossRefMATH Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65(6), 711–715 (2016)ADSMathSciNetCrossRefMATH
41.
go back to reference Li, J., Jia, L., Zhou, H.F., Zhang, T.T.: Secure quantum private comparison protocol based on the entanglement swapping between three-particle W-class state and bell state. Int. J. Theor. Phys. 55(3), 1710–1718 (2016)CrossRefMATH Li, J., Jia, L., Zhou, H.F., Zhang, T.T.: Secure quantum private comparison protocol based on the entanglement swapping between three-particle W-class state and bell state. Int. J. Theor. Phys. 55(3), 1710–1718 (2016)CrossRefMATH
42.
go back to reference Li, Y.B., Ma, Y.J., Xu, S.W., Huang, W., Zhang, Y.S.: Quantum private comparison based on phase encoding of single photons. Int. J. Theor. Phys. 53(9), 3191–3200 (2014)CrossRefMATH Li, Y.B., Ma, Y.J., Xu, S.W., Huang, W., Zhang, Y.S.: Quantum private comparison based on phase encoding of single photons. Int. J. Theor. Phys. 53(9), 3191–3200 (2014)CrossRefMATH
43.
go back to reference Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12(6), 2191–2205 (2013)ADSMathSciNetCrossRefMATH Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12(6), 2191–2205 (2013)ADSMathSciNetCrossRefMATH
44.
go back to reference Li, Y.B., Wang, T.Y., Chen, H.Y., Li, M.D., Yang, Y.T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)MathSciNetCrossRefMATH Li, Y.B., Wang, T.Y., Chen, H.Y., Li, M.D., Yang, Y.T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)MathSciNetCrossRefMATH
45.
go back to reference Lin, J.S., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)MathSciNetCrossRefMATH Lin, J.S., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)MathSciNetCrossRefMATH
46.
go back to reference Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with \(\chi \)-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)MathSciNetCrossRefMATH Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with \(\chi \)-type entangled states. Int. J. Theor. Phys. 52(11), 4185–4194 (2013)MathSciNetCrossRefMATH
47.
go back to reference Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)ADSMathSciNetCrossRefMATH Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)ADSMathSciNetCrossRefMATH
48.
go back to reference Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)MathSciNetCrossRefMATH Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)MathSciNetCrossRefMATH
49.
go back to reference Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)ADSMathSciNetCrossRefMATH Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)ADSMathSciNetCrossRefMATH
50.
go back to reference He, G.P.: Simple quantum protocols for the millionaire problem with a semi-honest third party. Int J Quantum Inf. 11(02), 289–300 (2013)MathSciNetCrossRefMATH He, G.P.: Simple quantum protocols for the millionaire problem with a semi-honest third party. Int J Quantum Inf. 11(02), 289–300 (2013)MathSciNetCrossRefMATH
51.
go back to reference Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS 82), Washington, DC (1982) Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS 82), Washington, DC (1982)
52.
Metadata
Title
Quantum private comparison employing single-photon interference
Authors
Bin Liu
Di Xiao
Wei Huang
Heng-Yue Jia
Ting-Ting Song
Publication date
01-07-2017
Publisher
Springer US
Published in
Quantum Information Processing / Issue 7/2017
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-017-1630-y

Other articles of this Issue 7/2017

Quantum Information Processing 7/2017 Go to the issue