Skip to main content
Top
Published in: Polymer Bulletin 4/2021

12-05-2020 | Original Paper

RAFT polymerization of styrene mediated by oxazolyl-functionalized trithiocarbonate RAFT agents

Authors: Gabriel J. Summers, Teboho S. Motsoeneng, Carol A. Summers

Published in: Polymer Bulletin | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

New oxazolyl benzhydryl and oxazolyl benzyl-functionalized trithiocarbonate RAFT agents, 1-(butylsulfanylthiocarbonylsulfanyl)-1-[4-(4,5-dihydro-4,4-dimethyl-2-oxazolyl)phenyl]-1-phenylmethane and 2-[4-((butylsulfanylthiocarbonylsulfanyl)methyl)phenyl]-4,5-dihydro-4,4-dimethyloxazole, were prepared and employed as chain transfer agents in RAFT polymerization reactions. The RAFT polymerization of styrene, mediated by the appropriate oxazolyl-functionalized trithiocarbonate RAFT agent with AIBN as initiator at 70 °C, proceeded via controlled/living polymerization processes to produce the corresponding α-oxazolyl-functionalized polystyrene derivative, with the oxazolyl group introduced at the α-terminus of the polymer chain and the absence of any unfunctionalized polystyrene. Post-RAFT polymerization chain end modification of α-oxazolyl-functionalized polystyrene by acid-catalyzed hydrolysis reactions with dilute hydrochloric acid afforded the corresponding α-carboxyl-functionalized polystyrene derivative, with the retention of the butylsulfanylthiocarbonylsulfanyl moiety at the ω-terminus of the polymer chain. Polymer kinetic measurements show that each RAFT polymerization reaction follows first-order rate kinetics with respect to the percentage monomer consumption. The oxazolyl-functionalized benzhydryl fragmentation radical provides better control of the re-initiation of the polymerization of styrene than the oxazolyl-functionalized benzyl fragmentation radical. After consumption of the RAFT agent, the number average molecular weights of the functionalized polymers increases linearly with the percentage monomer conversion to produce α-oxazolyl-functionalized polystyrene derivatives with narrow molecular weight distributions.

Graphic abstract

New oxazolyl benzhydryl and oxazolyl benzyl-functionalized trithiocarbonate RAFT agents, 1-(butylsulfanylthiocarbonylsulfanyl)-1-[4-(4,5-dihydro-4,4-dimethyl-2-oxazolyl)phenyl]-1-phenylmethane and 2-[4-((butylsulfanylthiocarbonylsulfanyl)methyl)phenyl]-4,5-dihydro-4,4-dimethyloxazole, were prepared and employed as chain transfer agents in RAFT polymerization reactions. The RAFT polymerization of styrene, mediated by 1-(butylsulfanylthiocarbonylsulfanyl)-1-[4-(4,5-dihydro-4,4-dimethyl-2-oxazolyl)phenyl]-1-phenylmethane or 2-[4-((butylsulfanylthiocarbonylsulfanyl)methyl)phenyl]-4,5-dihydro-4,4-dimethyloxazole as chain transfer agents with AIBN as the initiator at 70 °C, proceeds via a controlled/living polymerization process to produce the corresponding α-oxazolyl-functionalized polystyrene derivative, with the oxazolyl group introduced at the α-terminus of the polymer chain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Labriti B, Dkhireche N, Touir R, Ebn Touhami M, Sfaira M, El Hallaoui A, Hammouti B, Alami A (2012) Synergism in mild steel corrosion and scale inhibition by a new oxazoline in synthetic cooling water. Arab J Sci Eng 37:1293–1303CrossRef Labriti B, Dkhireche N, Touir R, Ebn Touhami M, Sfaira M, El Hallaoui A, Hammouti B, Alami A (2012) Synergism in mild steel corrosion and scale inhibition by a new oxazoline in synthetic cooling water. Arab J Sci Eng 37:1293–1303CrossRef
2.
go back to reference Summers GJ, Maseko RB, Summers CA (2014) The preparation of α-bis and α, ω-tetrakis aromatic oxazolyl- and carboxyl-functionalized polymers using 1,1-bis[4-(2-(4,4-dimethyl-1,3-oxazolyl))phenyl]ethylene in atom transfer radical polymerization reactions. Polym Int 63:1785–1796CrossRef Summers GJ, Maseko RB, Summers CA (2014) The preparation of α-bis and α, ω-tetrakis aromatic oxazolyl- and carboxyl-functionalized polymers using 1,1-bis[4-(2-(4,4-dimethyl-1,3-oxazolyl))phenyl]ethylene in atom transfer radical polymerization reactions. Polym Int 63:1785–1796CrossRef
3.
go back to reference Weber C, Neuwirth T, Kempe K, Ozkahraman B, Tamahkar E, Mert H, Becer CR, Schubert US (2012) 2-Isopropenyl-2-oxazoline: a versatile monomer for functionalization of polymers obtained via RAFT. Macromolecules 45:20–27CrossRef Weber C, Neuwirth T, Kempe K, Ozkahraman B, Tamahkar E, Mert H, Becer CR, Schubert US (2012) 2-Isopropenyl-2-oxazoline: a versatile monomer for functionalization of polymers obtained via RAFT. Macromolecules 45:20–27CrossRef
4.
go back to reference Adams N, Schubert US (2007) Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev 59:1504–1520PubMedCrossRef Adams N, Schubert US (2007) Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev 59:1504–1520PubMedCrossRef
5.
go back to reference York AW, Kirkland SE, McCormick CL (2008) Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Deliv Rev 60:1018–1036PubMedCrossRef York AW, Kirkland SE, McCormick CL (2008) Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Deliv Rev 60:1018–1036PubMedCrossRef
6.
go back to reference Fairbanks B, Gunatillake PA, Meagher L (2015) Biomedical applications of polymers derived by reversible addition-fragmentation chain-transfer (RAFT). Adv Drug Deliv Rev 91:141–152PubMedCrossRef Fairbanks B, Gunatillake PA, Meagher L (2015) Biomedical applications of polymers derived by reversible addition-fragmentation chain-transfer (RAFT). Adv Drug Deliv Rev 91:141–152PubMedCrossRef
7.
go back to reference Wang YJ, Wu C (2018) Site-specific conjugation of polymers to proteins. Biomacromol 19:1804–1825CrossRef Wang YJ, Wu C (2018) Site-specific conjugation of polymers to proteins. Biomacromol 19:1804–1825CrossRef
8.
go back to reference Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu JQ, Perrier S (2009) Bioapplications of RAFT polymerization. Chem Rev 109:5402–5436PubMedCrossRef Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu JQ, Perrier S (2009) Bioapplications of RAFT polymerization. Chem Rev 109:5402–5436PubMedCrossRef
9.
go back to reference Setijadi E, Tao L, Liu JQ, Jia ZF, Boyer C, Davis TP (2009) Biodegradable star polymers functionalized with β-cyclodextrin inclusion complexes. Biomacromol 10:2699–2707CrossRef Setijadi E, Tao L, Liu JQ, Jia ZF, Boyer C, Davis TP (2009) Biodegradable star polymers functionalized with β-cyclodextrin inclusion complexes. Biomacromol 10:2699–2707CrossRef
10.
go back to reference Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383CrossRef Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383CrossRef
11.
go back to reference Hosseinzadeh H, Pashaei S, Hosseinzadeh S, Khodaparast Z, Ramin S, Saadat Y (2018) Preparation of novel multi-walled carbon nanotubes nanocomposite adsorbent via RAFT technique for the adsorption of toxic copper ions. Sci Total Environ 640–641:303–314PubMedCrossRef Hosseinzadeh H, Pashaei S, Hosseinzadeh S, Khodaparast Z, Ramin S, Saadat Y (2018) Preparation of novel multi-walled carbon nanotubes nanocomposite adsorbent via RAFT technique for the adsorption of toxic copper ions. Sci Total Environ 640–641:303–314PubMedCrossRef
12.
go back to reference Klein T, Parkin J, de Jongh RAJM, Esser L, Sepehrizadeh T, Zheng G, De Veer M, Alt K, Hagemeyer CE, Haddleton DM, Davis TP, Thelakkat M, Kempe K (2019) Functional brush poly(2-ethyl-2-oxazine)s: synthesis by CROP and RAFT, thermoresponsiveness and grafting onto iron oxide nanoparticles. Macromol Chem Rapid Commun 40:1800911CrossRef Klein T, Parkin J, de Jongh RAJM, Esser L, Sepehrizadeh T, Zheng G, De Veer M, Alt K, Hagemeyer CE, Haddleton DM, Davis TP, Thelakkat M, Kempe K (2019) Functional brush poly(2-ethyl-2-oxazine)s: synthesis by CROP and RAFT, thermoresponsiveness and grafting onto iron oxide nanoparticles. Macromol Chem Rapid Commun 40:1800911CrossRef
13.
go back to reference Zheng XF, Ji CW, Liu JC, Liu R, Mu QD, Liu XY (2019) Novel star polymers as chemically amplified positive-tone photoresists for KrF lithography applications. Ind Eng Chem Res 57:6790–6796CrossRef Zheng XF, Ji CW, Liu JC, Liu R, Mu QD, Liu XY (2019) Novel star polymers as chemically amplified positive-tone photoresists for KrF lithography applications. Ind Eng Chem Res 57:6790–6796CrossRef
14.
go back to reference Moad G, Chen M, Haussler M, Postma A, Rizzardo E, Thang SH (2011) Functional polymers for optoelectronic applications by RAFT polymerization. Polym Chem 2:492–519CrossRef Moad G, Chen M, Haussler M, Postma A, Rizzardo E, Thang SH (2011) Functional polymers for optoelectronic applications by RAFT polymerization. Polym Chem 2:492–519CrossRef
15.
go back to reference Chiefari J, Chong YKB, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562CrossRef Chiefari J, Chong YKB, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562CrossRef
16.
go back to reference Moad G, Rizzardo E, Thang SH (2008) Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49:1079–1131CrossRef Moad G, Rizzardo E, Thang SH (2008) Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49:1079–1131CrossRef
17.
go back to reference McCormick CL, Lowe AB (2004) Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. Acc Chem Res 37:312–325PubMedCrossRef McCormick CL, Lowe AB (2004) Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. Acc Chem Res 37:312–325PubMedCrossRef
18.
go back to reference Harvison MA, Lowe AB (2011) Combining RAFT radical polymerization and click/highly efficient coupling chemistries: a powerful strategy for the preparation of novel materials. Macromol Rapid Commun 32:779–800PubMedCrossRef Harvison MA, Lowe AB (2011) Combining RAFT radical polymerization and click/highly efficient coupling chemistries: a powerful strategy for the preparation of novel materials. Macromol Rapid Commun 32:779–800PubMedCrossRef
19.
go back to reference Moad G, Rizzardo E, Thang SH (2012) Living radical polymerization by the RAFT process—a third update. Aust J Chem 65:985–1076CrossRef Moad G, Rizzardo E, Thang SH (2012) Living radical polymerization by the RAFT process—a third update. Aust J Chem 65:985–1076CrossRef
20.
go back to reference Tasdelen MA, Kahveci MU, Yagci Y (2011) Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 36:455–567CrossRef Tasdelen MA, Kahveci MU, Yagci Y (2011) Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 36:455–567CrossRef
21.
go back to reference Ozturk T, Atalar MN, Goktas M, Hazer B (2013) One-step synthesis of block-graoft copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization using a novel macroinitiator. J Polym Sci Part A Polym Chem 51:2651–2659CrossRef Ozturk T, Atalar MN, Goktas M, Hazer B (2013) One-step synthesis of block-graoft copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization using a novel macroinitiator. J Polym Sci Part A Polym Chem 51:2651–2659CrossRef
22.
go back to reference Ozturk T, Kaygin O, Goktas M, Hazer B (2016) Synthesis and characterization of graft copolymers based on polyepichlorohydrin via reversible-addition chain transfer polymerization. J Macromol Sci Part A Pure Appl Chem 53:362–367CrossRef Ozturk T, Kaygin O, Goktas M, Hazer B (2016) Synthesis and characterization of graft copolymers based on polyepichlorohydrin via reversible-addition chain transfer polymerization. J Macromol Sci Part A Pure Appl Chem 53:362–367CrossRef
23.
go back to reference Keddie DJ, Moad G, Rizzardo E, Thang SH (2012) RAFT agent design and synthesis. Macromolecules 45:5321–5342CrossRef Keddie DJ, Moad G, Rizzardo E, Thang SH (2012) RAFT agent design and synthesis. Macromolecules 45:5321–5342CrossRef
24.
go back to reference Chong BYK, Krstina J, Le TPT, Moad G, Postma A, Rizzardo E, Thang SH (2003) Thiocarbonylthio compounds [S:C(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R). Macromolecules 36:2256–2272CrossRef Chong BYK, Krstina J, Le TPT, Moad G, Postma A, Rizzardo E, Thang SH (2003) Thiocarbonylthio compounds [S:C(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R). Macromolecules 36:2256–2272CrossRef
25.
go back to reference Lima V, Jiang X, Brokken-Zijp J, Schoenmakers PJ, Klumperman B, Van Der Linde R (2005) Synthesis and characterization of telechelic polymethacrylates via RAFT polymerization. J Polym Sci Part A Polym Chem 43:959–973CrossRef Lima V, Jiang X, Brokken-Zijp J, Schoenmakers PJ, Klumperman B, Van Der Linde R (2005) Synthesis and characterization of telechelic polymethacrylates via RAFT polymerization. J Polym Sci Part A Polym Chem 43:959–973CrossRef
26.
go back to reference Cortez-Lemus NA, Salgado-Rodriguez R, Licea-Claverie A (2010) Preparation of α, ω-telechelic hexyl acrylate polymers with -OH, -COOH, and -NH2 functional groups by RAFT. J Polym Sci Part A Polym Chem 48:3033–3051CrossRef Cortez-Lemus NA, Salgado-Rodriguez R, Licea-Claverie A (2010) Preparation of α, ω-telechelic hexyl acrylate polymers with -OH, -COOH, and -NH2 functional groups by RAFT. J Polym Sci Part A Polym Chem 48:3033–3051CrossRef
27.
go back to reference Kartal B, Yildiko U, Ozturk S, Ata A, Cakmak I (2004) Study of solution polymerization of styrene in the presence of poly(ethylene glycol)-RAFT agents possessing benzoyl xanthate derivatives. J Macromol Sci Part A Pure Appl Chem 51:990–998CrossRef Kartal B, Yildiko U, Ozturk S, Ata A, Cakmak I (2004) Study of solution polymerization of styrene in the presence of poly(ethylene glycol)-RAFT agents possessing benzoyl xanthate derivatives. J Macromol Sci Part A Pure Appl Chem 51:990–998CrossRef
28.
go back to reference Stace SJ, Moad G, Fellows CM, Keddie DJ (2015) The effect of Z-group modification on the RAFT polymerization of N-vinylpyrrolidone controlled by “switchable” N-pyridyl-functional dithiocarbamates. Polym Chem 6:7119–7126CrossRef Stace SJ, Moad G, Fellows CM, Keddie DJ (2015) The effect of Z-group modification on the RAFT polymerization of N-vinylpyrrolidone controlled by “switchable” N-pyridyl-functional dithiocarbamates. Polym Chem 6:7119–7126CrossRef
29.
go back to reference Ponnusamy K, Babu RP, Dhamodharan R (2013) Synthesis of block and graft copolymers of styrene by raft polymerization, using dodecyl-based trithiocarbonates as initiators and chain transfer agents. J Polym Sci Part A Polym Chem 51:1066–1078CrossRef Ponnusamy K, Babu RP, Dhamodharan R (2013) Synthesis of block and graft copolymers of styrene by raft polymerization, using dodecyl-based trithiocarbonates as initiators and chain transfer agents. J Polym Sci Part A Polym Chem 51:1066–1078CrossRef
30.
go back to reference Keddie DJ, Guerrero-Sanchez C, Moad G (2013) The reactivity of N-vinylcarbazole in RAFT polymerization: trithiocarbonates deliver optimal control for the synthesis of homopolymers and block copolymers. Polym Chem 4:3591–3601CrossRef Keddie DJ, Guerrero-Sanchez C, Moad G (2013) The reactivity of N-vinylcarbazole in RAFT polymerization: trithiocarbonates deliver optimal control for the synthesis of homopolymers and block copolymers. Polym Chem 4:3591–3601CrossRef
31.
go back to reference Kiasat AR, Mehrjardi MF (2008) A novel one-step synthesis of symmetrical dialkyl trithiocarbonates in the presence of phase-transfer catalysis. J Chin Chem Soc 55:639–642CrossRef Kiasat AR, Mehrjardi MF (2008) A novel one-step synthesis of symmetrical dialkyl trithiocarbonates in the presence of phase-transfer catalysis. J Chin Chem Soc 55:639–642CrossRef
32.
go back to reference Perrier S (2017) 50th anniversary perspective: rAFT polymerization—a user guide. Macromolecules 50:7433–7447CrossRef Perrier S (2017) 50th anniversary perspective: rAFT polymerization—a user guide. Macromolecules 50:7433–7447CrossRef
33.
go back to reference Chen JG, Feng X, Wang MX, Shen S, Li Y, Wang W, Liu ZT, Liu ZW, Jiang J, Lu J (2016) Controlled radical polymerization of fluorinated methacrylates in supercritical CO2: synthesis and application of a novel RAFT agent. J Polym Sci Part A Polym Chem 54:825–834CrossRef Chen JG, Feng X, Wang MX, Shen S, Li Y, Wang W, Liu ZT, Liu ZW, Jiang J, Lu J (2016) Controlled radical polymerization of fluorinated methacrylates in supercritical CO2: synthesis and application of a novel RAFT agent. J Polym Sci Part A Polym Chem 54:825–834CrossRef
34.
go back to reference Chen M, Johnson JA (2015) Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques. Chem Commun 51:6742–6745CrossRef Chen M, Johnson JA (2015) Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques. Chem Commun 51:6742–6745CrossRef
35.
go back to reference Zhang LW, Chen YM (2006) Allyl functionalized telechelic linear polymer and star polymer via RAFT polymerization. Polymer 47:5259–5266CrossRef Zhang LW, Chen YM (2006) Allyl functionalized telechelic linear polymer and star polymer via RAFT polymerization. Polymer 47:5259–5266CrossRef
36.
go back to reference Convertine AJ, Lokitz BS, Vasileva Y, Myrick LJ, Scales CW, Lowe AB, McCormick CL (2006) Direct synthesis of thermally responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization. Macromolecules 39:1724–1730CrossRef Convertine AJ, Lokitz BS, Vasileva Y, Myrick LJ, Scales CW, Lowe AB, McCormick CL (2006) Direct synthesis of thermally responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization. Macromolecules 39:1724–1730CrossRef
37.
go back to reference Sogabe A, Flores JD, McCormick CL (2010) Reversible addition-fragmentation chain transfer (RAFT) polymerization in an inverse microemulsion: partitioning of chain transfer agent (CTA) and its effects on polymer molecular weight. Macromolecules 43(43):6599–6607CrossRef Sogabe A, Flores JD, McCormick CL (2010) Reversible addition-fragmentation chain transfer (RAFT) polymerization in an inverse microemulsion: partitioning of chain transfer agent (CTA) and its effects on polymer molecular weight. Macromolecules 43(43):6599–6607CrossRef
38.
go back to reference Huo F, Wang XH, Zhang YY, Zhang X, Xu JX, Zhang WQ (2013) RAFT dispersion polymerization of styrene in water/alcohol: the solvent effect on polymer particle growth during polymer chain propagation. Macromol Chem Phys 214:902–911CrossRef Huo F, Wang XH, Zhang YY, Zhang X, Xu JX, Zhang WQ (2013) RAFT dispersion polymerization of styrene in water/alcohol: the solvent effect on polymer particle growth during polymer chain propagation. Macromol Chem Phys 214:902–911CrossRef
39.
go back to reference Rzayev ZMO, Turk M, Soylemez EA (2012) Bioengineering functional copolymers. XXI. Synthesis of a novel end carboxyl-trithiocarbonate functionalized poly(maleic anhydride) and its interaction with cancer cells. Bioorg Med Chem 20:5053–5061PubMedCrossRef Rzayev ZMO, Turk M, Soylemez EA (2012) Bioengineering functional copolymers. XXI. Synthesis of a novel end carboxyl-trithiocarbonate functionalized poly(maleic anhydride) and its interaction with cancer cells. Bioorg Med Chem 20:5053–5061PubMedCrossRef
40.
go back to reference Tappertzhofen K, Metz VV, Hubo M, Barz M, Postina R, Jonuleit H, Zentel R (2013) Synthesis of maleimide-functionalized HPMA-copolymers and in vitro characterization of the aRAGE- and Human Immunoglobulin (huIgG)-polymer conjugates. Macromol Biosci 13:203–214PubMedCrossRef Tappertzhofen K, Metz VV, Hubo M, Barz M, Postina R, Jonuleit H, Zentel R (2013) Synthesis of maleimide-functionalized HPMA-copolymers and in vitro characterization of the aRAGE- and Human Immunoglobulin (huIgG)-polymer conjugates. Macromol Biosci 13:203–214PubMedCrossRef
41.
go back to reference Ran F, Nie SQ, Li J, Su BH, Sun SD, Zhao CS (2012) Heparin-like macromolecules for the modification of anticoagulant biomaterials. Macromol Biosci 12:116–125PubMedCrossRef Ran F, Nie SQ, Li J, Su BH, Sun SD, Zhao CS (2012) Heparin-like macromolecules for the modification of anticoagulant biomaterials. Macromol Biosci 12:116–125PubMedCrossRef
42.
go back to reference Guo RW, Wang XX, Guo CG, Dong AJ, Zhang JH (2012) Facile and efficient synthesis of fluorescence-labeled RAFT agents and their application in the preparation of α-, ω- and α, ω-end-fluorescence-labeled polymers. Macromol Chem Phys 213:1851–1862CrossRef Guo RW, Wang XX, Guo CG, Dong AJ, Zhang JH (2012) Facile and efficient synthesis of fluorescence-labeled RAFT agents and their application in the preparation of α-, ω- and α, ω-end-fluorescence-labeled polymers. Macromol Chem Phys 213:1851–1862CrossRef
43.
go back to reference Sumerlin BS, Donovan MS, Mitsukami Y, Lowe AB, McCormick CL (2001) Water-soluble polymers. controlled polymerization in aqueous media of anionic acrylamido monomers via RAFT. Macromolecules 34:6561–6564CrossRef Sumerlin BS, Donovan MS, Mitsukami Y, Lowe AB, McCormick CL (2001) Water-soluble polymers. controlled polymerization in aqueous media of anionic acrylamido monomers via RAFT. Macromolecules 34:6561–6564CrossRef
44.
go back to reference Lee JM, Kim OH, Shim SE, Lee BH, Choe SJ (2005) Reversible addition-fragmentation chain transfer (RAFT) bulk polymerization of styrene: effect of R-group structures of carboxyl acid group functionalized RAFT agents. Macromol Res 13:236–242CrossRef Lee JM, Kim OH, Shim SE, Lee BH, Choe SJ (2005) Reversible addition-fragmentation chain transfer (RAFT) bulk polymerization of styrene: effect of R-group structures of carboxyl acid group functionalized RAFT agents. Macromol Res 13:236–242CrossRef
45.
go back to reference Shim SE, Lee HJ, Choe SJ (2004) Synthesis of functionalized monodisperse poly(methyl methacrylate) nanoparticles by a RAFT agent carrying carboxyl end group. Macromolecules 37:5565–5571CrossRef Shim SE, Lee HJ, Choe SJ (2004) Synthesis of functionalized monodisperse poly(methyl methacrylate) nanoparticles by a RAFT agent carrying carboxyl end group. Macromolecules 37:5565–5571CrossRef
46.
go back to reference Nuhn L, Overhoff I, Sperner M, Kaltenberg K, Zentel R (2014) RAFT-polymerized poly(hexafluoroisopropyl methacrylate)s as precursors for functional water-soluble polymers. Polym Chem 5:2484–2495CrossRef Nuhn L, Overhoff I, Sperner M, Kaltenberg K, Zentel R (2014) RAFT-polymerized poly(hexafluoroisopropyl methacrylate)s as precursors for functional water-soluble polymers. Polym Chem 5:2484–2495CrossRef
47.
go back to reference Lucius M, Falatach R, McGlone C, Makaroff K, Danielson A, Willaims C, Nix JC, Konkolewicz D, Page RC, Berberich JA (2016) Investigating the impact of polymer functional groups on the stability and activity of lysozyme-polymer conjugates. Biomacromol 17:1123–1134CrossRef Lucius M, Falatach R, McGlone C, Makaroff K, Danielson A, Willaims C, Nix JC, Konkolewicz D, Page RC, Berberich JA (2016) Investigating the impact of polymer functional groups on the stability and activity of lysozyme-polymer conjugates. Biomacromol 17:1123–1134CrossRef
48.
go back to reference Skrabania K, Miasnikova A, Bivigou-Koumba AM, Zehm D, Laschewsky A (2011) Examining the UV–vis absorption of RAFT chain transfer agents and their use for polymer analysis. Polym Chem 2:2074–2083CrossRef Skrabania K, Miasnikova A, Bivigou-Koumba AM, Zehm D, Laschewsky A (2011) Examining the UV–vis absorption of RAFT chain transfer agents and their use for polymer analysis. Polym Chem 2:2074–2083CrossRef
49.
go back to reference Ma JY, Lu MG, Zhang HX (2014) Poly(methyl methacrylate)-b-poly(butyl acrylate) block copolymers synthesized via RAFT emulsion polymerization. J Macromol Chem Part A Pure Appl Chem 51:279–285 Ma JY, Lu MG, Zhang HX (2014) Poly(methyl methacrylate)-b-poly(butyl acrylate) block copolymers synthesized via RAFT emulsion polymerization. J Macromol Chem Part A Pure Appl Chem 51:279–285
50.
go back to reference Wiss KT, Theato P (2010) Facilitating polymer conjugation via combination of RAFT polymerization and activated ester chemistry. J Polym Sci Part A Polym Chem 48:4758–4767CrossRef Wiss KT, Theato P (2010) Facilitating polymer conjugation via combination of RAFT polymerization and activated ester chemistry. J Polym Sci Part A Polym Chem 48:4758–4767CrossRef
51.
go back to reference Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37:2709–2717CrossRef Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37:2709–2717CrossRef
52.
go back to reference Theis A, Feldermann A, Charton N, Stenzel MH, Davis TP, Barner-Kowollik C (2005) Access to chain length dependent termination rate coefficients of methyl acrylate via reversible addition-fragmentation chain transfer polymerization. Macromolecules 38:2595–2605CrossRef Theis A, Feldermann A, Charton N, Stenzel MH, Davis TP, Barner-Kowollik C (2005) Access to chain length dependent termination rate coefficients of methyl acrylate via reversible addition-fragmentation chain transfer polymerization. Macromolecules 38:2595–2605CrossRef
53.
go back to reference Johnson IJ, Khosravi E, Musa OM, Simnett RE, Eissa AM (2015) Xanthates designed for the preparation of N-Vinyl pyrrolidone-based linear and star architectures via RAFT polymerization. J Polym Sci Part A Polym Chem 53:775–786CrossRef Johnson IJ, Khosravi E, Musa OM, Simnett RE, Eissa AM (2015) Xanthates designed for the preparation of N-Vinyl pyrrolidone-based linear and star architectures via RAFT polymerization. J Polym Sci Part A Polym Chem 53:775–786CrossRef
54.
go back to reference Wood MR, Duncalf DJ, Rannard SP, Perrier S (2006) Selective one-pot synthesis of trithiocarbonates, xanthates, and dithiocarbamates for use in RAFT/MADIX living radical polymerizations. Org Lett 8:553–556PubMedCrossRef Wood MR, Duncalf DJ, Rannard SP, Perrier S (2006) Selective one-pot synthesis of trithiocarbonates, xanthates, and dithiocarbamates for use in RAFT/MADIX living radical polymerizations. Org Lett 8:553–556PubMedCrossRef
55.
go back to reference Malic N, Evans RA (2006) Synthesis of Carboxylic Acid and Ester Mid-Functionalized Polymers using RAFT Polymerization and ATRP. Aust J Chem 59:763–771CrossRef Malic N, Evans RA (2006) Synthesis of Carboxylic Acid and Ester Mid-Functionalized Polymers using RAFT Polymerization and ATRP. Aust J Chem 59:763–771CrossRef
56.
go back to reference Houillot L, Bui C, Save M, Charleux B, Farcet C, Moire C, Raust JA, Rodriguez I (2007) Synthesis of Well-defined polyacrylate particle dispersions in organic medium using simultaneous raft polymerization and self-assembly of block copolymers. A Strong influence of the selected thiocarbonylthio chain transfer agent. Macromolecules 40:6500–6509CrossRef Houillot L, Bui C, Save M, Charleux B, Farcet C, Moire C, Raust JA, Rodriguez I (2007) Synthesis of Well-defined polyacrylate particle dispersions in organic medium using simultaneous raft polymerization and self-assembly of block copolymers. A Strong influence of the selected thiocarbonylthio chain transfer agent. Macromolecules 40:6500–6509CrossRef
57.
go back to reference Zhang ZY, Vanparijs N, Vandewalle S, Du Prez FE, Nuhn L, De Geest BG (2016) Squaric ester amides as hydrolysis-resistant functional groups for protein-conjugation of RAFT-derived polymers. Polym Chem 7:7242–7248CrossRef Zhang ZY, Vanparijs N, Vandewalle S, Du Prez FE, Nuhn L, De Geest BG (2016) Squaric ester amides as hydrolysis-resistant functional groups for protein-conjugation of RAFT-derived polymers. Polym Chem 7:7242–7248CrossRef
58.
go back to reference Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process—a second update. Aust J Chem 62:1402–1472CrossRef Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process—a second update. Aust J Chem 62:1402–1472CrossRef
59.
go back to reference Chong B, Moad G, Rizzardo E, Skidmore M, Thang SH (2006) Thermolysis of RAFT-synthesized poly(methyl methacrylate). Aust J Chem 59:755–762CrossRef Chong B, Moad G, Rizzardo E, Skidmore M, Thang SH (2006) Thermolysis of RAFT-synthesized poly(methyl methacrylate). Aust J Chem 59:755–762CrossRef
60.
go back to reference Chiefari J, Mayadunne RTA, Moad CL, Moad G, Rizzardo E, Postma A, Skidmore MA, Thang SH (2003) Thiocarbonylthio compounds (S:C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating group Z. Macromolecules 36:2273–2283CrossRef Chiefari J, Mayadunne RTA, Moad CL, Moad G, Rizzardo E, Postma A, Skidmore MA, Thang SH (2003) Thiocarbonylthio compounds (S:C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating group Z. Macromolecules 36:2273–2283CrossRef
61.
go back to reference Mishra V, Kumar R (2012) RAFT polymerization of N-vinyl pyrrolidone using prop-2-ynyl morpholine-4-carbodithioate as a new chain transfer agent. J Appl Polym Sci 124:4475–4485 Mishra V, Kumar R (2012) RAFT polymerization of N-vinyl pyrrolidone using prop-2-ynyl morpholine-4-carbodithioate as a new chain transfer agent. J Appl Polym Sci 124:4475–4485
62.
go back to reference Morton M, Fetters LJ (1975) Anionic polymerization of vinyl monomers. Rubber Chem Tech 48:359–409CrossRef Morton M, Fetters LJ (1975) Anionic polymerization of vinyl monomers. Rubber Chem Tech 48:359–409CrossRef
63.
go back to reference Summers GJ, Ndawuni MP, Summers CA (2014) Syntheses of α-bis(4-aminophenyl)- and α, ω-tetrakis(4-aminophenyl)- functionalized polymers using 1,1-bis(4-aminophenyl)ethylene in atom transfer radical polymerization reactions. Polym Int 63:876–886CrossRef Summers GJ, Ndawuni MP, Summers CA (2014) Syntheses of α-bis(4-aminophenyl)- and α, ω-tetrakis(4-aminophenyl)- functionalized polymers using 1,1-bis(4-aminophenyl)ethylene in atom transfer radical polymerization reactions. Polym Int 63:876–886CrossRef
64.
go back to reference Celiz AD, Scherman OA (2010) A facile route to ureidopyrimidinone-functionalized polymers via RAFT. J Polym Sci Part A Polym Chem 48:5833–5841CrossRef Celiz AD, Scherman OA (2010) A facile route to ureidopyrimidinone-functionalized polymers via RAFT. J Polym Sci Part A Polym Chem 48:5833–5841CrossRef
65.
go back to reference Summers GJ, Maseko RB, Summers CA (2013) The syntheses of aromatic oxazolyl and carboxyl functionalized polymers using 4,5-dihydro-4,4-dimethyl-2-[4-(1-phenylethenyl)phenyl]oxazole in atom transfer radical polymerization reactions. Eur Polym J 49:1111–1127CrossRef Summers GJ, Maseko RB, Summers CA (2013) The syntheses of aromatic oxazolyl and carboxyl functionalized polymers using 4,5-dihydro-4,4-dimethyl-2-[4-(1-phenylethenyl)phenyl]oxazole in atom transfer radical polymerization reactions. Eur Polym J 49:1111–1127CrossRef
66.
go back to reference Misawa T, Dodo K, Ishikawa M, Hashimoto Y, Sagawa M, Kizaki M, Aoyama H (2015) Structure-activity relationships of benzhydrol derivatives based on 1′-acetoxychavicol acetate (ACA) and their inhibitory activities on multiple myeloma cell growth via inactivation of the NF-κB pathway. Bioorg Med Chem 23:2241–2246PubMedCrossRef Misawa T, Dodo K, Ishikawa M, Hashimoto Y, Sagawa M, Kizaki M, Aoyama H (2015) Structure-activity relationships of benzhydrol derivatives based on 1′-acetoxychavicol acetate (ACA) and their inhibitory activities on multiple myeloma cell growth via inactivation of the NF-κB pathway. Bioorg Med Chem 23:2241–2246PubMedCrossRef
67.
go back to reference Guzi TJ, Paruch K, Mallams AK, Rivera JD, Doll RJ, Girijavallabhan VM, Pachter J, Liu YT, Saksena AK (2003) Preparation of substituted 1-benzhydryl-4-[2-(4-piperidinyl)acetyl]-piperazines as 17-β-hydroxysteroid dehydrogenase type 3 inhibitors for the treatment of androgen dependent diseases. Patent WO 03/022835 A1 Guzi TJ, Paruch K, Mallams AK, Rivera JD, Doll RJ, Girijavallabhan VM, Pachter J, Liu YT, Saksena AK (2003) Preparation of substituted 1-benzhydryl-4-[2-(4-piperidinyl)acetyl]-piperazines as 17-β-hydroxysteroid dehydrogenase type 3 inhibitors for the treatment of androgen dependent diseases. Patent WO 03/022835 A1
68.
go back to reference Postma A, Davis TP, Evans RA, Li G, Moad G, O’Shea MS (2006) Synthesis of well-defined polystyrene with primary amine end groups through the use of phthalimido-functional RAFT agents. Macromolecules 39:5293–5306CrossRef Postma A, Davis TP, Evans RA, Li G, Moad G, O’Shea MS (2006) Synthesis of well-defined polystyrene with primary amine end groups through the use of phthalimido-functional RAFT agents. Macromolecules 39:5293–5306CrossRef
69.
go back to reference Summers GJ, Maseko RB, Beebeejaun BMP, Summers CA (2011) Synthesis of aromatic oxazolyl- and carboxyl-functionalized polymers: atom transfer radical polymerization of styrene initiated by 2-[(4-bromomethyl)phenyl]-4,5-dihydro-4,4-dimethyloxazole. J Polym Sci Part A Polym Chem 49:2601–2614CrossRef Summers GJ, Maseko RB, Beebeejaun BMP, Summers CA (2011) Synthesis of aromatic oxazolyl- and carboxyl-functionalized polymers: atom transfer radical polymerization of styrene initiated by 2-[(4-bromomethyl)phenyl]-4,5-dihydro-4,4-dimethyloxazole. J Polym Sci Part A Polym Chem 49:2601–2614CrossRef
70.
go back to reference Meyers AI, Gabel R, Mihelich ED (1978) Nucleophilic aromatic substitution on (o-methoxyaryl)oxazolines. A convenient synthesis of o-alkyl-, o-alkenyl-, and o-arylbenzoic acids. J Org Chem 43:1372–1379CrossRef Meyers AI, Gabel R, Mihelich ED (1978) Nucleophilic aromatic substitution on (o-methoxyaryl)oxazolines. A convenient synthesis of o-alkyl-, o-alkenyl-, and o-arylbenzoic acids. J Org Chem 43:1372–1379CrossRef
71.
go back to reference Summers GJ, Quirk RP (1996) Anionic synthesis of aromatic carboxyl functionalized polymers. Chain-end functionalization of poly(styryl)lithium with 4,5-dihydro-4,4-dimethyl-2-[4-(1-phenylethenyl)phenyl]oxazole. Polym Int 40:79–86CrossRef Summers GJ, Quirk RP (1996) Anionic synthesis of aromatic carboxyl functionalized polymers. Chain-end functionalization of poly(styryl)lithium with 4,5-dihydro-4,4-dimethyl-2-[4-(1-phenylethenyl)phenyl]oxazole. Polym Int 40:79–86CrossRef
72.
go back to reference Keddie DJ (2014) A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem Rev 43:496–505 Keddie DJ (2014) A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem Rev 43:496–505
73.
go back to reference Moad G, Chiefari J, Chong YK, Krstina J, Mayadunne RTA, Postma A, Rizzardo E, Thang SH (2000) Living free radical polymerization with reversible addition—fragmentation chain transfer (the life of RAFT). Polym Int 49:993–1001CrossRef Moad G, Chiefari J, Chong YK, Krstina J, Mayadunne RTA, Postma A, Rizzardo E, Thang SH (2000) Living free radical polymerization with reversible addition—fragmentation chain transfer (the life of RAFT). Polym Int 49:993–1001CrossRef
74.
go back to reference Barner-Kowollik C, Vana P, Quinn JF, Davis TP (2002) Long-lived intermediates in reversible addition-fragmentation chain-transfer (RAFT) polymerization generated by γ radiation. J Polym Sci Part A Polym Chem 40:1058–1063CrossRef Barner-Kowollik C, Vana P, Quinn JF, Davis TP (2002) Long-lived intermediates in reversible addition-fragmentation chain-transfer (RAFT) polymerization generated by γ radiation. J Polym Sci Part A Polym Chem 40:1058–1063CrossRef
Metadata
Title
RAFT polymerization of styrene mediated by oxazolyl-functionalized trithiocarbonate RAFT agents
Authors
Gabriel J. Summers
Teboho S. Motsoeneng
Carol A. Summers
Publication date
12-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 4/2021
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-020-03211-6

Other articles of this Issue 4/2021

Polymer Bulletin 4/2021 Go to the issue

Premium Partners