Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 4/2018

04-12-2017

Rapid microwave-assisted solvothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals for low-cost thin film photovoltaic: investigation of synthesis parameters and morphology control

Authors: Bharati Patro, S. Vijaylakshmi, Pratibha Sharma

Published in: Journal of Materials Science: Materials in Electronics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanocrystals of CZTS have been synthesized by solvothermal technique using rapid microwave aided heating. The effects of synthesis parameters, such as reaction temperature, reaction time, precursor concentration, various surfactants, were investigated. Samples were characterised by XRD, Raman spectroscopy, XPS, FEGSEM-EDS, FEGTEM for phase, crystallinity, morphology and compositional information. The optical properties of the samples were investigated with UV–Vis spectroscopy. Uniform hierarchical flowerlike morphology was obtained at 180 °C for 30 min reaction time. The band gap was found to be 1.57 eV which is suitable for photovoltaic applications. The flower like morphology was changed to spherical type when the concentration of the reactants increased from 2 to 10 mM. Use of PVP along with the reactants had a pronounced effect on particle morphology and size. The growth mechanism of the CZTS particles synthesized without any surfactant and with addition of PVP surfactant was discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi: Rapid Res. Lett. 10, 583–586 (2016) P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi: Rapid Res. Lett. 10, 583–586 (2016)
2.
go back to reference A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science. 352 (2016) A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science. 352 (2016)
3.
go back to reference R.M. Geisthardt, M. Topič, J.R. Sites, Status and potential of CdTe solar-cell efficiency. IEEE J. Photovoltaics 5, 1217–1221 (2015)CrossRef R.M. Geisthardt, M. Topič, J.R. Sites, Status and potential of CdTe solar-cell efficiency. IEEE J. Photovoltaics 5, 1217–1221 (2015)CrossRef
4.
go back to reference D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421–1436 (2011)CrossRef D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421–1436 (2011)CrossRef
5.
go back to reference W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu et al., Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4:1301465. (2014)CrossRef W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu et al., Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4:1301465. (2014)CrossRef
6.
go back to reference H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors. Sol. Energy Mater. Sol. Cells 49, 407–414 (1997)CrossRef H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors. Sol. Energy Mater. Sol. Cells 49, 407–414 (1997)CrossRef
7.
go back to reference K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk et al., Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 97, 143508 (2010)CrossRef K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk et al., Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 97, 143508 (2010)CrossRef
8.
go back to reference K. Moriya, K. Tanaka, H. Uchiki, Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition. Jpn. J. Appl. Phys. Part 1 46, 5780–5781 (2007)CrossRef K. Moriya, K. Tanaka, H. Uchiki, Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition. Jpn. J. Appl. Phys. Part 1 46, 5780–5781 (2007)CrossRef
9.
go back to reference A.V. Moholkar, S.S. Shinde, A.R. Babar, K.-U. Sim, H.K. Lee, K.Y. Rajpure et al., Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: solar cells. J. Alloy. Compd. 509, 7439–7446 (2011)CrossRef A.V. Moholkar, S.S. Shinde, A.R. Babar, K.-U. Sim, H.K. Lee, K.Y. Rajpure et al., Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: solar cells. J. Alloy. Compd. 509, 7439–7446 (2011)CrossRef
10.
go back to reference K. Ito, T. Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys. 27, 2094–2097 (1988)CrossRef K. Ito, T. Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys. 27, 2094–2097 (1988)CrossRef
11.
go back to reference J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, K.-H. Kim, Electrical and optical properties of Cu2ZnSnS 4 thin films prepared by rf magnetron sputtering process. Sol. Energy Mater. Sol. Cells 75, 155–162 (2003)CrossRef J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, K.-H. Kim, Electrical and optical properties of Cu2ZnSnS 4 thin films prepared by rf magnetron sputtering process. Sol. Energy Mater. Sol. Cells 75, 155–162 (2003)CrossRef
12.
go back to reference T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara et al., Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 66, 1978–1981 (2005)CrossRef T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara et al., Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 66, 1978–1981 (2005)CrossRef
13.
go back to reference K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki et al., Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 515, 5997–5999 (2007)CrossRef K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki et al., Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 515, 5997–5999 (2007)CrossRef
14.
go back to reference B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovoltaics Res. Appl. 21, 72–76 (2013)CrossRef B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovoltaics Res. Appl. 21, 72–76 (2013)CrossRef
15.
go back to reference G. Brammertz, M. Buffière, S. Oueslati, H. ElAnzeery, K.B. Messaoud, S. Sahayaraj et al., Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells. Appl. Phys. Lett. 103, 163904 (2013)CrossRef G. Brammertz, M. Buffière, S. Oueslati, H. ElAnzeery, K.B. Messaoud, S. Sahayaraj et al., Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells. Appl. Phys. Lett. 103, 163904 (2013)CrossRef
16.
go back to reference J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, I. Forbes, New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material. Phys. Status Solidi B 245, 1772–1778 (2008)CrossRef J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, I. Forbes, New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material. Phys. Status Solidi B 245, 1772–1778 (2008)CrossRef
17.
go back to reference A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.W. Schock et al., Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films 517, 2511–2514 (2009)CrossRef A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.W. Schock et al., Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films 517, 2511–2514 (2009)CrossRef
18.
go back to reference S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2, 253–259 (2012)CrossRef S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2, 253–259 (2012)CrossRef
19.
go back to reference M. Jiang, Y. Li, R. Dhakal, P. Thapaliya, M. Mastro, J.D. Caldwell et al., Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol–gel method. J. Photonics Energy 1, 019501–019506 (2011)CrossRef M. Jiang, Y. Li, R. Dhakal, P. Thapaliya, M. Mastro, J.D. Caldwell et al., Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol–gel method. J. Photonics Energy 1, 019501–019506 (2011)CrossRef
20.
go back to reference K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization. Sol. Energy Mater. Sol. Cells 95, 2855–2860 (2011)CrossRef K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization. Sol. Energy Mater. Sol. Cells 95, 2855–2860 (2011)CrossRef
21.
go back to reference T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 22, E156–E159 (2010)CrossRef T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 22, E156–E159 (2010)CrossRef
22.
go back to reference D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovoltaics Res. Appl. 20, 6–11 (2012)CrossRef D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovoltaics Res. Appl. 20, 6–11 (2012)CrossRef
23.
go back to reference T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu et al., Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Adv. Energy Mater. 3, 34–38 (2013)CrossRef T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu et al., Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Adv. Energy Mater. 3, 34–38 (2013)CrossRef
24.
go back to reference E. Gu, C. Yan, F. Liu, Y. Liu, Z. Su, K. Zhang et al., Cu2ZnSnS4 thin film solar cells from coated nanocrystals ink. J. Mater. Sci.: Mater. Electron. 26, 1932–1939 (2015) E. Gu, C. Yan, F. Liu, Y. Liu, Z. Su, K. Zhang et al., Cu2ZnSnS4 thin film solar cells from coated nanocrystals ink. J. Mater. Sci.: Mater. Electron. 26, 1932–1939 (2015)
25.
go back to reference C.K. Miskin, W.-C. Yang, C.J. Hages, N.J. Carter, C.S. Joglekar, E.A. Stach et al., 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks. Prog. Photovoltaics Res. Appl. 23, 654–659 (2015)CrossRef C.K. Miskin, W.-C. Yang, C.J. Hages, N.J. Carter, C.S. Joglekar, E.A. Stach et al., 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks. Prog. Photovoltaics Res. Appl. 23, 654–659 (2015)CrossRef
26.
go back to reference Q. Guo, G.M. Ford, W.-C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse et al., Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 132, 17384–17386 (2010)CrossRef Q. Guo, G.M. Ford, W.-C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse et al., Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 132, 17384–17386 (2010)CrossRef
27.
go back to reference Y. Cao, M.S. Denny, J.V. Caspar, W.E. Farneth, Q. Guo, A.S. Ionkin et al., High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J. Am. Chem. Soc. 134, 15644–15647 (2012)CrossRef Y. Cao, M.S. Denny, J.V. Caspar, W.E. Farneth, Q. Guo, A.S. Ionkin et al., High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J. Am. Chem. Soc. 134, 15644–15647 (2012)CrossRef
28.
go back to reference D. Xia, P. Lei, Y. Zheng, B. Zhou, Synthesis and characterization of Cu2ZnSnS4 nanocrystals by hot-injection method. J. Mater. Sci.: Mater. Electron. 26, 5426–5432 (2015) D. Xia, P. Lei, Y. Zheng, B. Zhou, Synthesis and characterization of Cu2ZnSnS4 nanocrystals by hot-injection method. J. Mater. Sci.: Mater. Electron. 26, 5426–5432 (2015)
29.
go back to reference A. Wei, Z. Yan, Y. Zhao, M. Zhuang, J. Liu, Solvothermal synthesis of Cu2ZnSnS4 nanocrystalline thin films for application of solar cells. Int. J. Hydrogen Energy 40, 797–805 (2015)CrossRef A. Wei, Z. Yan, Y. Zhao, M. Zhuang, J. Liu, Solvothermal synthesis of Cu2ZnSnS4 nanocrystalline thin films for application of solar cells. Int. J. Hydrogen Energy 40, 797–805 (2015)CrossRef
30.
go back to reference W. Liu, B. Guo, C. Mak, A. Li, X. Wu, F. Zhang, Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films 535, 39–43 (2013)CrossRef W. Liu, B. Guo, C. Mak, A. Li, X. Wu, F. Zhang, Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films 535, 39–43 (2013)CrossRef
31.
go back to reference Y.-H. Lin, S. Das, C.-Y. Yang, J.-C. Sung, C.-H. Lu, Phase-controlled synthesis of Cu2ZnSnS4 powders via the microwave-assisted solvothermal route. J. Alloy. Compd. 632, 354–360 (2015)CrossRef Y.-H. Lin, S. Das, C.-Y. Yang, J.-C. Sung, C.-H. Lu, Phase-controlled synthesis of Cu2ZnSnS4 powders via the microwave-assisted solvothermal route. J. Alloy. Compd. 632, 354–360 (2015)CrossRef
32.
go back to reference W. Wang, H. Shen, X. He, Study on the synthesis and formation mechanism of Cu2ZnSnS4 particles by microwave irradiation. Mater. Res. Bull. 48, 3140–3143 (2013)CrossRef W. Wang, H. Shen, X. He, Study on the synthesis and formation mechanism of Cu2ZnSnS4 particles by microwave irradiation. Mater. Res. Bull. 48, 3140–3143 (2013)CrossRef
33.
go back to reference S.W. Shin, J.H. Han, C.Y. Park, A.V. Moholkar, J.Y. Lee, J.H. Kim, Quaternary Cu2ZnSnS4 nanocrystals: facile and low cost synthesis by microwave-assisted solution method. J. Alloy. Compd. 516, 96–101 (2012)CrossRef S.W. Shin, J.H. Han, C.Y. Park, A.V. Moholkar, J.Y. Lee, J.H. Kim, Quaternary Cu2ZnSnS4 nanocrystals: facile and low cost synthesis by microwave-assisted solution method. J. Alloy. Compd. 516, 96–101 (2012)CrossRef
34.
go back to reference P.K. Sarswat, M.L. Free, An investigation of rapidly synthesized Cu2ZnSnS4 nanocrystals. J. Cryst. Growth 372, 87–94 (2013)CrossRef P.K. Sarswat, M.L. Free, An investigation of rapidly synthesized Cu2ZnSnS4 nanocrystals. J. Cryst. Growth 372, 87–94 (2013)CrossRef
35.
go back to reference J. Schmink, N. Leadbeater, Microwave Heating as a Tool for Sustainable Chemistry. (CRC Press, Boca Raton, 2010), pp. 1–24 J. Schmink, N. Leadbeater, Microwave Heating as a Tool for Sustainable Chemistry. (CRC Press, Boca Raton, 2010), pp. 1–24
36.
go back to reference S. Horikoshi, N. Serpone, Considerations of microwave heating. In Microwaves in Nanoparticle Synthesis. (Wiley-VCH, Weinheim, 2013), pp. 39–54CrossRef S. Horikoshi, N. Serpone, Considerations of microwave heating. In Microwaves in Nanoparticle Synthesis. (Wiley-VCH, Weinheim, 2013), pp. 39–54CrossRef
37.
go back to reference B. Flynn, W. Wang, C. Chang, G.S. Herman, Microwave assisted synthesis of Cu2ZnSnS4 colloidal nanoparticle inks. Phys Status Solid A 209, 2186–2194 (2012)CrossRef B. Flynn, W. Wang, C. Chang, G.S. Herman, Microwave assisted synthesis of Cu2ZnSnS4 colloidal nanoparticle inks. Phys Status Solid A 209, 2186–2194 (2012)CrossRef
38.
go back to reference W. Wang, H. Shen, L.H. Wong, Z. Su, H. Yao, Y. Li, A 4.92% efficiency Cu2ZnSnS4 solar cell from nanoparticle ink and molecular solution. RSC Adv. 6, 54049–54053 (2016)CrossRef W. Wang, H. Shen, L.H. Wong, Z. Su, H. Yao, Y. Li, A 4.92% efficiency Cu2ZnSnS4 solar cell from nanoparticle ink and molecular solution. RSC Adv. 6, 54049–54053 (2016)CrossRef
39.
go back to reference Y. Xie, C. Zhang, F. Yue, Y. Zhang, Y. Shi, T. Ma, Morphology dependence of performance of counter electrodes for dye-sensitized solar cells of hydrothermally prepared hierarchical Cu2ZnSnS4 nanostructures. RSC Adv. 3, 23264–23268 (2013)CrossRef Y. Xie, C. Zhang, F. Yue, Y. Zhang, Y. Shi, T. Ma, Morphology dependence of performance of counter electrodes for dye-sensitized solar cells of hydrothermally prepared hierarchical Cu2ZnSnS4 nanostructures. RSC Adv. 3, 23264–23268 (2013)CrossRef
40.
go back to reference S. Sarkar, K. Bhattacharjee, G.C. Das, K.K. Chattopadhyay, Self-sacrificial template directed hydrothermal route to kesterite-Cu2ZnSnS4 microspheres and study of their photo response properties. CrystEngComm 16, 2634–2644 (2014)CrossRef S. Sarkar, K. Bhattacharjee, G.C. Das, K.K. Chattopadhyay, Self-sacrificial template directed hydrothermal route to kesterite-Cu2ZnSnS4 microspheres and study of their photo response properties. CrystEngComm 16, 2634–2644 (2014)CrossRef
41.
go back to reference Y. Guo, J. Wei, Y. Liu, T. Yang, Z. Xu, Surfactant-tuned phase structure and morphologies of Cu2ZnSnS4 hierarchical microstructures and their visible-light photocatalytic activities. Nanoscale Res. Lett. 12, 181 (2017)CrossRef Y. Guo, J. Wei, Y. Liu, T. Yang, Z. Xu, Surfactant-tuned phase structure and morphologies of Cu2ZnSnS4 hierarchical microstructures and their visible-light photocatalytic activities. Nanoscale Res. Lett. 12, 181 (2017)CrossRef
42.
go back to reference Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, S.-X. Wu, Hierarchical Cu2ZnSnS4 particles for a low-cost solar cell: morphology control and growth mechanism. J. Phys. Chem. C 115, 19632–19639 (2011)CrossRef Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, S.-X. Wu, Hierarchical Cu2ZnSnS4 particles for a low-cost solar cell: morphology control and growth mechanism. J. Phys. Chem. C 115, 19632–19639 (2011)CrossRef
43.
go back to reference D. Pareek, K.R. Balasubramaniam, P. Sharma, Synthesis and characterization of bulk Cu2ZnSnX4 (X: S, Se) via thermodynamically supported mechano-chemical process. Mater. Charact. 103, 42–49 (2015)CrossRef D. Pareek, K.R. Balasubramaniam, P. Sharma, Synthesis and characterization of bulk Cu2ZnSnX4 (X: S, Se) via thermodynamically supported mechano-chemical process. Mater. Charact. 103, 42–49 (2015)CrossRef
44.
go back to reference R. Saravana Kumar, B.D. Ryu, S. Chandramohan, J.K. Seol, S.-K. Lee, C.-H. Hong, Rapid synthesis of sphere-like Cu2ZnSnS4 microparticles by microwave irradiation. Mater. Lett. 86, 174–177 (2012)CrossRef R. Saravana Kumar, B.D. Ryu, S. Chandramohan, J.K. Seol, S.-K. Lee, C.-H. Hong, Rapid synthesis of sphere-like Cu2ZnSnS4 microparticles by microwave irradiation. Mater. Lett. 86, 174–177 (2012)CrossRef
45.
go back to reference N. Kattan, B. Hou, D.J. Fermín, D. Cherns, Crystal structure and defects visualization of Cu2ZnSnS4 nanoparticles employing transmission electron microscopy and electron diffraction. Appl. Mater. Today 1, 52–59 (2015)CrossRef N. Kattan, B. Hou, D.J. Fermín, D. Cherns, Crystal structure and defects visualization of Cu2ZnSnS4 nanoparticles employing transmission electron microscopy and electron diffraction. Appl. Mater. Today 1, 52–59 (2015)CrossRef
46.
go back to reference Z. Seboui, Y. Cuminal, N. Kamoun-Turki, Physical properties of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. J. Renew. Sustain. Energy 5, 023113 (2013)CrossRef Z. Seboui, Y. Cuminal, N. Kamoun-Turki, Physical properties of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. J. Renew. Sustain. Energy 5, 023113 (2013)CrossRef
47.
go back to reference D. Tang, Q. Wang, F. Liu, L. Zhao, Z. Han, K. Sun et al., An alternative route towards low-cost Cu2ZnSnS4 thin film solar cells. Surf. Coat. Technol. 232, 53–59 (2013)CrossRef D. Tang, Q. Wang, F. Liu, L. Zhao, Z. Han, K. Sun et al., An alternative route towards low-cost Cu2ZnSnS4 thin film solar cells. Surf. Coat. Technol. 232, 53–59 (2013)CrossRef
48.
go back to reference P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloy. Compd. 509, 7600–7606 (2011)CrossRef P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloy. Compd. 509, 7600–7606 (2011)CrossRef
49.
go back to reference A. Singh, H. Geaney, F. Laffir, K.M. Ryan, Colloidal synthesis of Wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J. Am. Chem. Soc. 134, 2910–2913 (2012)CrossRef A. Singh, H. Geaney, F. Laffir, K.M. Ryan, Colloidal synthesis of Wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J. Am. Chem. Soc. 134, 2910–2913 (2012)CrossRef
50.
go back to reference C. Zou, L. Zhang, D. Lin, Y. Yang, Q. Li, X. Xu et al., Facile synthesis of Cu2ZnSnS4 nanocrystals. CrystEngComm 13, 3310–3313 (2011)CrossRef C. Zou, L. Zhang, D. Lin, Y. Yang, Q. Li, X. Xu et al., Facile synthesis of Cu2ZnSnS4 nanocrystals. CrystEngComm 13, 3310–3313 (2011)CrossRef
51.
go back to reference D. Pareek, K.R. Balasubramaniam, P. Sharma, Reaction pathway for synthesis of Cu2ZnSn(S/Se)4 via mechano-chemical route and annealing studies. J. Mater. Sci.: Mater. Electron. 28, 1199–1210 (2017) D. Pareek, K.R. Balasubramaniam, P. Sharma, Reaction pathway for synthesis of Cu2ZnSn(S/Se)4 via mechano-chemical route and annealing studies. J. Mater. Sci.: Mater. Electron. 28, 1199–1210 (2017)
52.
go back to reference F. Long, S. Chi, J. He, J. Wang, X. Wu, S. Mo et al., Synthesis of hexagonal wurtzite Cu2ZnSnS4 prisms by an ultrasound-assisted microwave solvothermal method. J. Solid State Chem. 229, 228–234 (2015)CrossRef F. Long, S. Chi, J. He, J. Wang, X. Wu, S. Mo et al., Synthesis of hexagonal wurtzite Cu2ZnSnS4 prisms by an ultrasound-assisted microwave solvothermal method. J. Solid State Chem. 229, 228–234 (2015)CrossRef
53.
go back to reference Y. Zeng, H. Li, B. Qu, B. Xiang, L. Wang, Q. Zhang et al., Facile synthesis of flower-like Cu3BiS3 hierarchical nanostructures and their electrochemical properties for lithium-ion batteries. CrystEngComm 14, 550–554 (2012)CrossRef Y. Zeng, H. Li, B. Qu, B. Xiang, L. Wang, Q. Zhang et al., Facile synthesis of flower-like Cu3BiS3 hierarchical nanostructures and their electrochemical properties for lithium-ion batteries. CrystEngComm 14, 550–554 (2012)CrossRef
54.
go back to reference R. Saravana Kumar, C.-H. Hong, M.-D. Kim, Doughnut-shaped hierarchical Cu2ZnSnS4 microparticles synthesized by cyclic microwave irradiation. Adv. Powder Technol. 25, 1554–1559 (2014)CrossRef R. Saravana Kumar, C.-H. Hong, M.-D. Kim, Doughnut-shaped hierarchical Cu2ZnSnS4 microparticles synthesized by cyclic microwave irradiation. Adv. Powder Technol. 25, 1554–1559 (2014)CrossRef
55.
go back to reference M. Tang, Q. Tian, X. Hu, Y. Peng, Y. Xue, Z. Chen et al., In situ preparation of CuInS2 films on a flexible copper foil and their application in thin film solar cells. CrystEngComm 14, 1825–1832 (2012)CrossRef M. Tang, Q. Tian, X. Hu, Y. Peng, Y. Xue, Z. Chen et al., In situ preparation of CuInS2 films on a flexible copper foil and their application in thin film solar cells. CrystEngComm 14, 1825–1832 (2012)CrossRef
Metadata
Title
Rapid microwave-assisted solvothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals for low-cost thin film photovoltaic: investigation of synthesis parameters and morphology control
Authors
Bharati Patro
S. Vijaylakshmi
Pratibha Sharma
Publication date
04-12-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 4/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-8272-9

Other articles of this Issue 4/2018

Journal of Materials Science: Materials in Electronics 4/2018 Go to the issue