Skip to main content
Top

2017 | OriginalPaper | Chapter

Rates of Convergence for Empirical Spectral Measures: A Soft Approach

Authors : Elizabeth S. Meckes, Mark W. Meckes

Published in: Convexity and Concentration

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Understanding the limiting behavior of eigenvalues of random matrices is the central problem of random matrix theory. Classical limit results are known for many models, and there has been significant recent progress in obtaining more quantitative, non-asymptotic results. In this paper, we describe a systematic approach to bounding rates of convergence and proving tail inequalities for the empirical spectral measures of a wide variety of random matrix ensembles. We illustrate the approach by proving asymptotically almost sure rates of convergence of the empirical spectral measure in the following ensembles: Wigner matrices, Wishart matrices, Haar-distributed matrices from the compact classical groups, powers of Haar matrices, randomized sums and random compressions of Hermitian matrices, a random matrix model for the Hamiltonians of quantum spin glasses, and finally the complex Ginibre ensemble. Many of the results appeared previously and are being collected and described here as illustrations of the general method; however, some details (particularly in the Wigner and Wishart cases) are new.
Our approach makes use of techniques from probability in Banach spaces, in particular concentration of measure and bounds for suprema of stochastic processes, in combination with more classical tools from matrix analysis, approximation theory, and Fourier analysis. It is highly flexible, as evidenced by the broad list of examples. It is moreover based largely on “soft” methods, and involves little hard analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. W. Anderson, A. Guionnet, and O. Zeitouni. An Introduction to Random Matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. G. W. Anderson, A. Guionnet, and O. Zeitouni. An Introduction to Random Matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
2.
go back to reference R. Bhatia. Matrix Analysis, volume 169 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. R. Bhatia. Matrix Analysis, volume 169 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997.
3.
go back to reference D. Buzinski and E. S. Meckes. Almost sure convergence in quantum spin glasses. J. Math. Phys., 56(12), 2015. D. Buzinski and E. S. Meckes. Almost sure convergence in quantum spin glasses. J. Math. Phys., 56(12), 2015.
4.
6.
go back to reference S. Dallaporta. Eigenvalue variance bounds for Wigner and covariance random matrices. Random Matrices Theory Appl., 1(3):1250007, 28, 2012. S. Dallaporta. Eigenvalue variance bounds for Wigner and covariance random matrices. Random Matrices Theory Appl., 1(3):1250007, 28, 2012.
7.
go back to reference S. Dallaporta. Eigenvalue variance bounds for covariance matrices. Markov Process. Related Fields, 21(1):145–175, 2015.MathSciNetMATH S. Dallaporta. Eigenvalue variance bounds for covariance matrices. Markov Process. Related Fields, 21(1):145–175, 2015.MathSciNetMATH
8.
go back to reference K. R. Davidson and S. J. Szarek. Local operator theory, random matrices and Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol. I, pages 317–366. North-Holland, Amsterdam, 2001. K. R. Davidson and S. J. Szarek. Local operator theory, random matrices and Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol. I, pages 317–366. North-Holland, Amsterdam, 2001.
9.
go back to reference P. Diaconis and M. Shahshahani. On the eigenvalues of random matrices. J. Appl. Probab., 31A:49–62, 1994. Studies in applied probability. P. Diaconis and M. Shahshahani. On the eigenvalues of random matrices. J. Appl. Probab., 31A:49–62, 1994. Studies in applied probability.
10.
go back to reference R. Dudley. V. N. Sudakov’s work on expected suprema of Gaussian processes. In Proceedings of High Dimensional Probability VII: The Cargse Volume, volume 71 of Progress in Probability, pages 37–43. Birkhuser, Basel, 2016. R. Dudley. V. N. Sudakov’s work on expected suprema of Gaussian processes. In Proceedings of High Dimensional Probability VII: The Cargse Volume, volume 71 of Progress in Probability, pages 37–43. Birkhuser, Basel, 2016.
12.
go back to reference L. Erdős and D. Schröder. Phase transition in the density of states of quantum spin glasses. Math. Phys. Anal. Geom., 17(3–4):441–464, 2014.MathSciNetMATH L. Erdős and D. Schröder. Phase transition in the density of states of quantum spin glasses. Math. Phys. Anal. Geom., 17(3–4):441–464, 2014.MathSciNetMATH
13.
go back to reference L. Erdős and H.-T. Yau. Universality of local spectral statistics of random matrices. Bull. Amer. Math. Soc. (N.S.), 49(3):377–414, 2012.MathSciNetCrossRefMATH L. Erdős and H.-T. Yau. Universality of local spectral statistics of random matrices. Bull. Amer. Math. Soc. (N.S.), 49(3):377–414, 2012.MathSciNetCrossRefMATH
14.
go back to reference L. Erdős, H.-T. Yau, and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math., 229(3):1435–1515, 2012.MathSciNetCrossRefMATH L. Erdős, H.-T. Yau, and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math., 229(3):1435–1515, 2012.MathSciNetCrossRefMATH
15.
go back to reference L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.MATH L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.MATH
16.
go back to reference P. J. Forrester and E. M. Rains. Interrelationships between orthogonal, unitary and symplectic matrix ensembles. In Random matrix models and their applications, volume 40 of Math. Sci. Res. Inst. Publ., pages 171–207. Cambridge Univ. Press, Cambridge, 2001. P. J. Forrester and E. M. Rains. Interrelationships between orthogonal, unitary and symplectic matrix ensembles. In Random matrix models and their applications, volume 40 of Math. Sci. Res. Inst. Publ., pages 171–207. Cambridge Univ. Press, Cambridge, 2001.
17.
go back to reference F. Götze and A. Tikhomirov. Optimal bounds for convergence of expected spectral distributions to the semi-circular law. To appear in Probab. Theory Related Fields. F. Götze and A. Tikhomirov. Optimal bounds for convergence of expected spectral distributions to the semi-circular law. To appear in Probab. Theory Related Fields.
18.
go back to reference F. Götze and A. Tikhomirov. The rate of convergence for spectra of GUE and LUE matrix ensembles. Cent. Eur. J. Math., 3(4):666–704 (electronic), 2005. F. Götze and A. Tikhomirov. The rate of convergence for spectra of GUE and LUE matrix ensembles. Cent. Eur. J. Math., 3(4):666–704 (electronic), 2005.
19.
go back to reference N. Gozlan. A characterization of dimension free concentration in terms of transportation inequalities. Ann. Probab., 37(6):2480–2498, 2009.MathSciNetCrossRefMATH N. Gozlan. A characterization of dimension free concentration in terms of transportation inequalities. Ann. Probab., 37(6):2480–2498, 2009.MathSciNetCrossRefMATH
20.
go back to reference N. Gozlan, C. Roberto, and P.-M. Samson. From dimension free concentration to the Poincaré inequality. Calc. Var. Partial Differential Equations, 52(3–4):899–925, 2015.MathSciNetCrossRefMATH N. Gozlan, C. Roberto, and P.-M. Samson. From dimension free concentration to the Poincaré inequality. Calc. Var. Partial Differential Equations, 52(3–4):899–925, 2015.MathSciNetCrossRefMATH
21.
go back to reference M. Gromov and V. D. Milman. A topological application of the isoperimetric inequality. Amer. J. Math., 105(4):843–854, 1983.MathSciNetCrossRefMATH M. Gromov and V. D. Milman. A topological application of the isoperimetric inequality. Amer. J. Math., 105(4):843–854, 1983.MathSciNetCrossRefMATH
22.
go back to reference A. Guionnet and O. Zeitouni. Concentration of the spectral measure for large matrices. Electron. Comm. Probab., 5:119–136 (electronic), 2000. A. Guionnet and O. Zeitouni. Concentration of the spectral measure for large matrices. Electron. Comm. Probab., 5:119–136 (electronic), 2000.
23.
go back to reference J. Gustavsson. Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Statist., 41(2):151–178, 2005.MathSciNetCrossRefMATH J. Gustavsson. Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Statist., 41(2):151–178, 2005.MathSciNetCrossRefMATH
24.
go back to reference J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág. Determinantal processes and independence. Probab. Surv., 3:206–229, 2006.MathSciNetCrossRefMATH J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág. Determinantal processes and independence. Probab. Surv., 3:206–229, 2006.MathSciNetCrossRefMATH
25.
go back to reference V. Kargin. A concentration inequality and a local law for the sum of two random matrices. Probab. Theory Related Fields, 154(3–4):677–702, 2012.MathSciNetCrossRefMATH V. Kargin. A concentration inequality and a local law for the sum of two random matrices. Probab. Theory Related Fields, 154(3–4):677–702, 2012.MathSciNetCrossRefMATH
26.
go back to reference N. M. Katz and P. Sarnak. Random Matrices, Frobenius Eigenvalues, and Monodromy, volume 45 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1999. N. M. Katz and P. Sarnak. Random Matrices, Frobenius Eigenvalues, and Monodromy, volume 45 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1999.
27.
go back to reference J. P. Keating, N. Linden, and H. J. Wells. Spectra and eigenstates of spin chain Hamiltonians. Comm. Math. Phys., 338(1):81–102, 2015.MathSciNetCrossRefMATH J. P. Keating, N. Linden, and H. J. Wells. Spectra and eigenstates of spin chain Hamiltonians. Comm. Math. Phys., 338(1):81–102, 2015.MathSciNetCrossRefMATH
28.
go back to reference M. Ledoux. The Concentration of Measure Phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001. M. Ledoux. The Concentration of Measure Phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.
29.
go back to reference M. Ledoux. Deviation inequalities on largest eigenvalues. In Geometric Aspects of Functional Analysis, volume 1910 of Lecture Notes in Math., pages 167–219. Springer, Berlin, 2007. M. Ledoux. Deviation inequalities on largest eigenvalues. In Geometric Aspects of Functional Analysis, volume 1910 of Lecture Notes in Math., pages 167–219. Springer, Berlin, 2007.
31.
go back to reference M. Ledoux and B. Rider. Small deviations for beta ensembles. Electron. J. Probab., 15:no. 41, 1319–1343, 2010. M. Ledoux and B. Rider. Small deviations for beta ensembles. Electron. J. Probab., 15:no. 41, 1319–1343, 2010.
32.
go back to reference V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.), 72 (114):507–536, 1967.MathSciNet V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.), 72 (114):507–536, 1967.MathSciNet
34.
go back to reference E. Meckes. Projections of probability distributions: a measure-theoretic Dvoretzky theorem. In Geometric Aspects of Functional Analysis, volume 2050 of Lecture Notes in Math., pages 317–326. Springer, Heidelberg, 2012. E. Meckes. Projections of probability distributions: a measure-theoretic Dvoretzky theorem. In Geometric Aspects of Functional Analysis, volume 2050 of Lecture Notes in Math., pages 317–326. Springer, Heidelberg, 2012.
35.
go back to reference E. S. Meckes and M. W. Meckes. Another observation about operator compressions. Proc. Amer. Math. Soc., 139(4):1433–1439, 2011.MathSciNetCrossRefMATH E. S. Meckes and M. W. Meckes. Another observation about operator compressions. Proc. Amer. Math. Soc., 139(4):1433–1439, 2011.MathSciNetCrossRefMATH
36.
go back to reference E. S. Meckes and M. W. Meckes. Concentration and convergence rates for spectral measures of random matrices. Probab. Theory Related Fields, 156(1–2):145–164, 2013.MathSciNetCrossRefMATH E. S. Meckes and M. W. Meckes. Concentration and convergence rates for spectral measures of random matrices. Probab. Theory Related Fields, 156(1–2):145–164, 2013.MathSciNetCrossRefMATH
37.
go back to reference E. S. Meckes and M. W. Meckes. Spectral measures of powers of random matrices. Electron. Commun. Probab., 18:no. 78, 13, 2013. E. S. Meckes and M. W. Meckes. Spectral measures of powers of random matrices. Electron. Commun. Probab., 18:no. 78, 13, 2013.
38.
go back to reference E. S. Meckes and M. W. Meckes. A rate of convergence for the circular law for the complex Ginibre ensemble. Ann. Fac. Sci. Toulouse Math. (6), 24(1):93–117, 2015.MathSciNetCrossRefMATH E. S. Meckes and M. W. Meckes. A rate of convergence for the circular law for the complex Ginibre ensemble. Ann. Fac. Sci. Toulouse Math. (6), 24(1):93–117, 2015.MathSciNetCrossRefMATH
39.
go back to reference M. L. Mehta. Random Matrices, volume 142 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, third edition, 2004. M. L. Mehta. Random Matrices, volume 142 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, third edition, 2004.
40.
go back to reference S. Ng and M. Walters. A method to derive concentration of measure bounds on Markov chains. Electron. Comm. Probab., 20(95), 2015. S. Ng and M. Walters. A method to derive concentration of measure bounds on Markov chains. Electron. Comm. Probab., 20(95), 2015.
41.
42.
44.
go back to reference M. Talagrand. Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, volume 60 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer, Heidelberg, 2014. M. Talagrand. Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, volume 60 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer, Heidelberg, 2014.
45.
go back to reference T. Tao and V. Vu. Random matrices: universality of local eigenvalue statistics up to the edge. Comm. Math. Phys., 298(2):549–572, 2010.MathSciNetCrossRefMATH T. Tao and V. Vu. Random matrices: universality of local eigenvalue statistics up to the edge. Comm. Math. Phys., 298(2):549–572, 2010.MathSciNetCrossRefMATH
46.
47.
go back to reference T. Tao and V. Vu. Random matrices: sharp concentration of eigenvalues. Random Matrices Theory Appl., 2(3):1350007, 31, 2013. T. Tao and V. Vu. Random matrices: sharp concentration of eigenvalues. Random Matrices Theory Appl., 2(3):1350007, 31, 2013.
48.
go back to reference J. A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends in Machine Learning, 8(1–2), 2015. J. A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends in Machine Learning, 8(1–2), 2015.
49.
go back to reference R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Compressed Sensing, pages 210–268. Cambridge Univ. Press, Cambridge, 2012. R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Compressed Sensing, pages 210–268. Cambridge Univ. Press, Cambridge, 2012.
50.
go back to reference C. Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003. C. Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.
52.
Metadata
Title
Rates of Convergence for Empirical Spectral Measures: A Soft Approach
Authors
Elizabeth S. Meckes
Mark W. Meckes
Copyright Year
2017
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-7005-6_5

Premium Partner