Skip to main content
Top
Published in: Acta Mechanica 10/2023

25-06-2023 | Original Paper

Rayleigh waves in a centrosymmetric flexoelectric layer attached to elastic substrate

Authors: Sihao Lv, Shengping Shen

Published in: Acta Mechanica | Issue 10/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To explore the possibility of the application of pure flexoelectric devices, the Rayleigh wave propagation in the layered composite structure is investigated in this paper. Considering the flexoelectricity of centrosymmetric crystal materials, we obtain the formulas of Rayleigh waves in layered composite structures from the virtual work principle. By solving the homogeneous linear differential equations together with the consistent boundary conditions, the dispersion relation of Rayleigh waves is apparent. Numerical results show the influences of the flexoelectric coefficient and nonlocal characteristic length on the Rayleigh wave propagation. It is found that the phase velocity is dependent upon the three flexoelectric coefficients, nonlocal characteristic length, and thin-layer thickness. The mode shape shows that the energy is near the upper surface of the flexoelectric layer with a large normalized wave number. The distribution of the electric potential suggests the possible location of electrodes. This theoretical work could guide the designing of Rayleigh waves-based devices.
Literature
1.
go back to reference White, R.M., Voltmer, F.W.: Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 7(12), 314–316 (1965) White, R.M., Voltmer, F.W.: Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 7(12), 314–316 (1965)
2.
go back to reference Lindner, G.: Sensors and actuators based on surface acoustic waves propagating along solid–liquid interfaces. J. Phys. D. Appl. Phys. 41(12), 123002 (2008) Lindner, G.: Sensors and actuators based on surface acoustic waves propagating along solid–liquid interfaces. J. Phys. D. Appl. Phys. 41(12), 123002 (2008)
3.
go back to reference Go, D.B., Atashbar, M.Z., Ramshani, Z., Chang, H.C.: Surface acoustic wave devices for chemical sensing and microfluidics: a review and perspective. Anal. Methods-UK 9(28), 4112–4134 (2017) Go, D.B., Atashbar, M.Z., Ramshani, Z., Chang, H.C.: Surface acoustic wave devices for chemical sensing and microfluidics: a review and perspective. Anal. Methods-UK 9(28), 4112–4134 (2017)
4.
go back to reference Caliendo, C., Laidoudi, F.: Experimental and theoretical study of multifrequency surface acoustic wave devices in a single Si/SiO2/ZnO piezoelectric structure. Sensors 20(5), 1380 (2020) Caliendo, C., Laidoudi, F.: Experimental and theoretical study of multifrequency surface acoustic wave devices in a single Si/SiO2/ZnO piezoelectric structure. Sensors 20(5), 1380 (2020)
5.
go back to reference Jakubik, W.P.: Surface acoustic wave-based gas sensors. Thin Solid Films 520(3), 986–993 (2011) Jakubik, W.P.: Surface acoustic wave-based gas sensors. Thin Solid Films 520(3), 986–993 (2011)
6.
go back to reference Asad, M., Sheikhi, M.H.: Surface acoustic wave based H2S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles. Sens. Actuat. B-Chem. 198, 134–141 (2014) Asad, M., Sheikhi, M.H.: Surface acoustic wave based H2S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles. Sens. Actuat. B-Chem. 198, 134–141 (2014)
7.
go back to reference Rana, L., Gupta, R., Kshetrimayum, R., Tomar, M., Gupta, V.: Fabrication of surface acoustic wave based wireless NO2 gas sensor. Surf. Coat. Tech. 343, 89–92 (2018) Rana, L., Gupta, R., Kshetrimayum, R., Tomar, M., Gupta, V.: Fabrication of surface acoustic wave based wireless NO2 gas sensor. Surf. Coat. Tech. 343, 89–92 (2018)
8.
go back to reference Lamanna, L., Rizzi, F., Guido, F., Algieri, L., Marras, S., Mastronardi, V.M., De Vittorio, M.: Flexible and transparent aluminum-nitride-based surface-acoustic-wave device on polymeric polyethylene naphthalate. Adv. Electron. Mater. 5(6), 1900095 (2019) Lamanna, L., Rizzi, F., Guido, F., Algieri, L., Marras, S., Mastronardi, V.M., De Vittorio, M.: Flexible and transparent aluminum-nitride-based surface-acoustic-wave device on polymeric polyethylene naphthalate. Adv. Electron. Mater. 5(6), 1900095 (2019)
9.
go back to reference Liu, B., Chen, X., Cai, H., Ali, M.M., Tian, X., Tao, L., Ren, T.: Surface acoustic wave devices for sensor applications. J. Semicond. 37(2), 021001 (2016) Liu, B., Chen, X., Cai, H., Ali, M.M., Tian, X., Tao, L., Ren, T.: Surface acoustic wave devices for sensor applications. J. Semicond. 37(2), 021001 (2016)
10.
go back to reference Länge, K.: Bulk and surface acoustic wave sensor arrays for multi-analyte detection: a review. Sensors 19(24), 5382 (2019) Länge, K.: Bulk and surface acoustic wave sensor arrays for multi-analyte detection: a review. Sensors 19(24), 5382 (2019)
11.
go back to reference Xu, Z., Yuan, Y.J.: Implementation of guiding layers of surface acoustic wave devices: a review. Biosens. Bioelectron. 99, 500–512 (2018) Xu, Z., Yuan, Y.J.: Implementation of guiding layers of surface acoustic wave devices: a review. Biosens. Bioelectron. 99, 500–512 (2018)
12.
go back to reference Liu, Y., Cai, Y., Zhang, Y., Tovstopyat, A., Liu, S., Sun, C.: Materials, design, and characteristics of bulk acoustic wave resonator: a review. Micromachines 11(7), 630 (2020) Liu, Y., Cai, Y., Zhang, Y., Tovstopyat, A., Liu, S., Sun, C.: Materials, design, and characteristics of bulk acoustic wave resonator: a review. Micromachines 11(7), 630 (2020)
13.
go back to reference Morgan, D.: Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing. Academic Press (2010) Morgan, D.: Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing. Academic Press (2010)
14.
go back to reference Jiang, Y., Zhao, Y., Zhang, L., Liu, B., Li, Q., Zhang, M., Pang, W.: Flexible film bulk acoustic wave filters toward radiofrequency wireless communication. Small 14(20), 1703644 (2018) Jiang, Y., Zhao, Y., Zhang, L., Liu, B., Li, Q., Zhang, M., Pang, W.: Flexible film bulk acoustic wave filters toward radiofrequency wireless communication. Small 14(20), 1703644 (2018)
15.
go back to reference Ruppel, C.C.: Acoustic wave filter technology–a review. IEEE T. Ultrason. Ferr. 64(9), 1390–1400 (2017) Ruppel, C.C.: Acoustic wave filter technology–a review. IEEE T. Ultrason. Ferr. 64(9), 1390–1400 (2017)
16.
go back to reference Su, R., Shen, J., Lu, Z., Xu, H., Niu, Q., Xu, Z., Pan, F.: Wideband and low-loss surface acoustic wave filter based on 15° YX-LiNbO3/SiO2/Si structure. IEEE Electr. Device L. 42(3), 438–441 (2021) Su, R., Shen, J., Lu, Z., Xu, H., Niu, Q., Xu, Z., Pan, F.: Wideband and low-loss surface acoustic wave filter based on 15° YX-LiNbO3/SiO2/Si structure. IEEE Electr. Device L. 42(3), 438–441 (2021)
17.
go back to reference Luo, J.T., Zeng, F., Pan, F., Li, H.F., Niu, J.B., Jia, R., Liu, M.: Filtering performance improvement in V-doped ZnO/diamond surface acoustic wave filters. Appl. Surf. 256(10), 3081–3085 (2010) Luo, J.T., Zeng, F., Pan, F., Li, H.F., Niu, J.B., Jia, R., Liu, M.: Filtering performance improvement in V-doped ZnO/diamond surface acoustic wave filters. Appl. Surf. 256(10), 3081–3085 (2010)
18.
go back to reference Luo, J.T., Pan, F., Fan, P., Zeng, F., Zhang, D.P., Zheng, Z.H., Liang, G.X.: Cost-effective and high frequency surface acoustic wave filters on ZnO: Fe/Si for low-loss and wideband application. Appl. Phys. Lett. 101(17), 172909 (2012) Luo, J.T., Pan, F., Fan, P., Zeng, F., Zhang, D.P., Zheng, Z.H., Liang, G.X.: Cost-effective and high frequency surface acoustic wave filters on ZnO: Fe/Si for low-loss and wideband application. Appl. Phys. Lett. 101(17), 172909 (2012)
19.
go back to reference Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. mater. 42(2), 475–487 (1994) Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. mater. 42(2), 475–487 (1994)
20.
go back to reference Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)MATH Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)MATH
21.
go back to reference Li, X.F., Wang, B.L., Lee, K.Y.: Size effects of the bending stiffness of nanowires. J. Appl. Phys. 105(7), 074306 (2009) Li, X.F., Wang, B.L., Lee, K.Y.: Size effects of the bending stiffness of nanowires. J. Appl. Phys. 105(7), 074306 (2009)
22.
go back to reference Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B. 74(1), 014110 (2006) Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B. 74(1), 014110 (2006)
23.
go back to reference Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B. 77(12), 125424 (2008) Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B. 77(12), 125424 (2008)
24.
go back to reference Liang, X., Hu, S., Shen, S.: Bernoulli-Euler dielectric beam model based on strain-gradient effect. J. Appl. Mech -T. ASME 80(4), 044502 (2013) Liang, X., Hu, S., Shen, S.: Bernoulli-Euler dielectric beam model based on strain-gradient effect. J. Appl. Mech -T. ASME 80(4), 044502 (2013)
25.
go back to reference Zhu, W., Fu, J.Y., Li, N., Cross, L.: Piezoelectric composite based on the enhanced flexoelectric effects. Appl. Phys. Lett. 89(19), 192904 (2006) Zhu, W., Fu, J.Y., Li, N., Cross, L.: Piezoelectric composite based on the enhanced flexoelectric effects. Appl. Phys. Lett. 89(19), 192904 (2006)
26.
go back to reference Chu, B., Zhu, W., Li, N., Cross, L.E.: Flexure mode flexoelectric piezoelectric composites. J. Appl. Phys. 106(10), 104109 (2009) Chu, B., Zhu, W., Li, N., Cross, L.E.: Flexure mode flexoelectric piezoelectric composites. J. Appl. Phys. 106(10), 104109 (2009)
27.
go back to reference Sharma, N.D., Landis, C.M., Sharma, P.: Piezoelectric thin-film superlattices without using piezoelectric materials. J. Appl. Phys. 108(2), 024304 (2010) Sharma, N.D., Landis, C.M., Sharma, P.: Piezoelectric thin-film superlattices without using piezoelectric materials. J. Appl. Phys. 108(2), 024304 (2010)
28.
go back to reference Deng, Q., Lv, S., Li, Z., Tan, K., Liang, X., Shen, S.: The impact of flexoelectricity on materials, devices, and physics. J. Appl. Phys. 128(8), 080902 (2020) Deng, Q., Lv, S., Li, Z., Tan, K., Liang, X., Shen, S.: The impact of flexoelectricity on materials, devices, and physics. J. Appl. Phys. 128(8), 080902 (2020)
29.
go back to reference Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. -Solid State 5(10), 2069–2070 (1964) Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. -Solid State 5(10), 2069–2070 (1964)
30.
go back to reference Meyer, R.B.: Piezoelectric effects in liquid crystals. Phys. Rev. Lett. 22(18), 918 (1969) Meyer, R.B.: Piezoelectric effects in liquid crystals. Phys. Rev. Lett. 22(18), 918 (1969)
31.
go back to reference Sharma, J.N., Sharma, R.: Modelling of thermoelastic Rayleigh waves in a solid underlying a fluid layer with varying temperature. Appl. Math. Model 33(3), 1683–1695 (2009) Sharma, J.N., Sharma, R.: Modelling of thermoelastic Rayleigh waves in a solid underlying a fluid layer with varying temperature. Appl. Math. Model 33(3), 1683–1695 (2009)
32.
go back to reference Pang, Y., Liu, J., Wang, Y., Fang, D.: Wave propagation in piezoelectric/piezomagnetic layered periodic composites. Acta Mech. Solida Sin. 21(6), 483–490 (2008) Pang, Y., Liu, J., Wang, Y., Fang, D.: Wave propagation in piezoelectric/piezomagnetic layered periodic composites. Acta Mech. Solida Sin. 21(6), 483–490 (2008)
33.
go back to reference Chaudhary, S., Sahu, S.A., Singhal, A.: Analytic model for Rayleigh wave propagation in piezoelectric layer overlaid orthotropic substratum. Acta Mech. 228(2), 495–529 (2017)MathSciNetMATH Chaudhary, S., Sahu, S.A., Singhal, A.: Analytic model for Rayleigh wave propagation in piezoelectric layer overlaid orthotropic substratum. Acta Mech. 228(2), 495–529 (2017)MathSciNetMATH
34.
go back to reference Tian, R., Nie, G., Liu, J., Pan, E., Wang, Y.: On Rayleigh waves in a piezoelectric semiconductor thin film over an elastic half-space. Int. J. Mech. Sci. 204, 106565 (2021) Tian, R., Nie, G., Liu, J., Pan, E., Wang, Y.: On Rayleigh waves in a piezoelectric semiconductor thin film over an elastic half-space. Int. J. Mech. Sci. 204, 106565 (2021)
35.
go back to reference Wang, B., Gu, Y., Zhang, S., Chen, L.Q.: Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019) Wang, B., Gu, Y., Zhang, S., Chen, L.Q.: Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019)
36.
go back to reference Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Kalinin, S.V.: Lost surface waves in nonpiezoelectric solids. Phys. Rev. B. 96(4), 045411 (2017) Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Kalinin, S.V.: Lost surface waves in nonpiezoelectric solids. Phys. Rev. B. 96(4), 045411 (2017)
37.
go back to reference Mirzade, F.K.: Influence of flexoelectricity on the propagation of nonlinear strain waves in solids. Phys. Status Solidi B 244(2), 529–544 (2007) Mirzade, F.K.: Influence of flexoelectricity on the propagation of nonlinear strain waves in solids. Phys. Status Solidi B 244(2), 529–544 (2007)
38.
go back to reference Hu, T., Yang, W., Liang, X., Shen, S.: Wave propagation in flexoelectric microstructured solids. J. Elasticity 130(2), 197–210 (2018)MathSciNetMATH Hu, T., Yang, W., Liang, X., Shen, S.: Wave propagation in flexoelectric microstructured solids. J. Elasticity 130(2), 197–210 (2018)MathSciNetMATH
39.
go back to reference Jiao, F.Y., Wei, P.J., Li, Y.Q.: Wave propagation in piezoelectric medium with the flexoelectric effect considered. J. Mech. 35(1), 51–63 (2019) Jiao, F.Y., Wei, P.J., Li, Y.Q.: Wave propagation in piezoelectric medium with the flexoelectric effect considered. J. Mech. 35(1), 51–63 (2019)
40.
go back to reference Georgiadis, H.G., Vardoulakis, I., Velgaki, E.: Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J. Elasticity 74(1), 17–45 (2004)MathSciNetMATH Georgiadis, H.G., Vardoulakis, I., Velgaki, E.: Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J. Elasticity 74(1), 17–45 (2004)MathSciNetMATH
41.
go back to reference Qi, L.: Rayleigh wave propagation in semi-infinite flexoelectric dielectrics. Phys. Scripta 94(6), 065803 (2019) Qi, L.: Rayleigh wave propagation in semi-infinite flexoelectric dielectrics. Phys. Scripta 94(6), 065803 (2019)
42.
go back to reference Yang, W., Liang, X., Deng, Q., Shen, S.: Rayleigh wave propagation in a homogeneous centrosymmetric flexoelectric half-space. Ultrasonics 103, 106105 (2020) Yang, W., Liang, X., Deng, Q., Shen, S.: Rayleigh wave propagation in a homogeneous centrosymmetric flexoelectric half-space. Ultrasonics 103, 106105 (2020)
43.
go back to reference Krishnamoorthy, S., Iliadis, A.A.: Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/(100) Si substrates. Solid State Electron. 52(11), 1710–1716 (2008) Krishnamoorthy, S., Iliadis, A.A.: Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/(100) Si substrates. Solid State Electron. 52(11), 1710–1716 (2008)
44.
go back to reference Miu, D., Constantinoiu, I., Dinca, V., Viespe, C.: Surface acoustic wave biosensor with laser-deposited gold layer having controlled porosity. Chemosensors 9(7), 173 (2021) Miu, D., Constantinoiu, I., Dinca, V., Viespe, C.: Surface acoustic wave biosensor with laser-deposited gold layer having controlled porosity. Chemosensors 9(7), 173 (2021)
45.
go back to reference Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. CMC. Comput. Mater. Con. 13(1), 63 (2009) Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. CMC. Comput. Mater. Con. 13(1), 63 (2009)
46.
go back to reference Lazar, M., Maugin, G.A., Aifantis, E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43(6), 1787–1817 (2006)MATH Lazar, M., Maugin, G.A., Aifantis, E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43(6), 1787–1817 (2006)MATH
47.
go back to reference Li, Y., Wei, P.: Reflection and transmission of plane waves at the interface between two different dipolar gradient elastic half-spaces. Int. J. Solids Struct. 56, 194–208 (2015) Li, Y., Wei, P.: Reflection and transmission of plane waves at the interface between two different dipolar gradient elastic half-spaces. Int. J. Solids Struct. 56, 194–208 (2015)
48.
go back to reference Jiao, F., Wei, P., Li, Y.: Wave propagation through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces. Ultrasonics 82, 217–232 (2018) Jiao, F., Wei, P., Li, Y.: Wave propagation through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces. Ultrasonics 82, 217–232 (2018)
49.
go back to reference Yang, W., Hu, T., Liang, X., Shen, S.: On band structures of layered phononic crystals with flexoelectricity. Arch. Appl. Mech. 88(5), 629–644 (2018) Yang, W., Hu, T., Liang, X., Shen, S.: On band structures of layered phononic crystals with flexoelectricity. Arch. Appl. Mech. 88(5), 629–644 (2018)
50.
go back to reference Su, J., Kuang, Z.B., Liu, H.: Love wave in ZnO/SiO2/Si structure with initial stresses. J. Sound Vib. 286(4–5), 981–999 (2005) Su, J., Kuang, Z.B., Liu, H.: Love wave in ZnO/SiO2/Si structure with initial stresses. J. Sound Vib. 286(4–5), 981–999 (2005)
51.
go back to reference Hou, Y., Tian, D., Chu, B.: Flexoelectric response of (1–x) BaTiO3-xSrTiO3 ceramics. Ceram. Int. 46(9), 12928–12932 (2020) Hou, Y., Tian, D., Chu, B.: Flexoelectric response of (1–x) BaTiO3-xSrTiO3 ceramics. Ceram. Int. 46(9), 12928–12932 (2020)
52.
go back to reference Zang, J., Fang, B., Zhang, Y.W., Yang, T.Z., Li, D.H.: Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory. Physica E 63, 147–150 (2014) Zang, J., Fang, B., Zhang, Y.W., Yang, T.Z., Li, D.H.: Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory. Physica E 63, 147–150 (2014)
Metadata
Title
Rayleigh waves in a centrosymmetric flexoelectric layer attached to elastic substrate
Authors
Sihao Lv
Shengping Shen
Publication date
25-06-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 10/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03627-x

Other articles of this Issue 10/2023

Acta Mechanica 10/2023 Go to the issue

Premium Partners