Skip to main content
Top
Published in: Acta Mechanica 10/2023

25-06-2023 | Original Paper

Reformulation of the virtual fields method using the variation of elastic energy for parameter identification of \({\textbf {QR}}\) decomposition-based hyperelastic models

Authors: Mingliang Jiang, Xinwei Du, Arun Srinivasa, Jimin Xu, Zhujiang Wang

Published in: Acta Mechanica | Issue 10/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

\({\textbf {QR}}\) decomposition-based constitutive relations for hyperelastic materials have attracted great attention from the community of solid mechanics, as hyperelastic models in terms of the distortion tensor \(\varvec{\widetilde{F}}\) have obvious physical meanings. However, there are few works systematically discussing the material parameter identification for \({\textbf {QR}}\) decomposition-based hyperelastic models. In this work, we reformulate the virtual fields method by considering the internal virtual work as the variation of elastic energy caused by virtual displacements. This approach (together with the \({\textbf {QR}}\) decompositions) is more concise and easier to be implemented when compared with the conventional approach, which requires specific stresses, such as Cauchy stress, first or second Piola–Kirchhoff stress, and conjugate virtual strains to calculate the internal virtual work. To validate the reformulated virtual fields method, we derive the Mooney–Rivlin model under the \({\textbf {QR}}\) framework, and then identify its material parameters for incompressible silicone specimens under biaxial tensile tests. The results indicate that the proposed virtual fields method works very well for \({\textbf {QR}}\) decomposition-based models.
Appendix
Available only for authorised users
Footnotes
1
The derivation for the IVW of neo-Hookean model is similar (let \(C_{01}=0 \)).
 
2
Promma and Grediac used \({\textbf {U}}^{*}\) to denote the virtual displacement, we used \(\delta {\textbf {U}}\) in this section.
 
Literature
1.
go back to reference McLellan, A.: Invariant functions and homogeneous bases of irreducible representations of the crystal point groups, with applications to thermodynamic properties of crystals under strain. J. Phys. C Solid State Phys. 7(18), 3326 (1974)CrossRef McLellan, A.: Invariant functions and homogeneous bases of irreducible representations of the crystal point groups, with applications to thermodynamic properties of crystals under strain. J. Phys. C Solid State Phys. 7(18), 3326 (1974)CrossRef
2.
go back to reference McLellan, A.: Finite strain coordinates and the stability of solid phases. J. Phys. C Solid State Phys. 9(22), 4083 (1976)CrossRef McLellan, A.: Finite strain coordinates and the stability of solid phases. J. Phys. C Solid State Phys. 9(22), 4083 (1976)CrossRef
3.
go back to reference Srinivasa, A.: On the use of the upper triangular (or QR) decomposition for developing constitutive equations for green-elastic materials. Int. J. Eng. Sci. 60, 1–12 (2012)MathSciNetCrossRefMATH Srinivasa, A.: On the use of the upper triangular (or QR) decomposition for developing constitutive equations for green-elastic materials. Int. J. Eng. Sci. 60, 1–12 (2012)MathSciNetCrossRefMATH
4.
go back to reference Ghosh, P., Srinivasa, A.: Development of a finite strain two-network model for shape memory polymers using QR decomposition. Int. J. Eng. Sci. 81, 177–191 (2014)MathSciNetCrossRefMATH Ghosh, P., Srinivasa, A.: Development of a finite strain two-network model for shape memory polymers using QR decomposition. Int. J. Eng. Sci. 81, 177–191 (2014)MathSciNetCrossRefMATH
5.
go back to reference Freed, A.D., Srinivasa, A.: Logarithmic strain and its material derivative for a QR decomposition of the deformation gradient. Acta Mech. 226(8), 2645–2670 (2015)MathSciNetCrossRefMATH Freed, A.D., Srinivasa, A.: Logarithmic strain and its material derivative for a QR decomposition of the deformation gradient. Acta Mech. 226(8), 2645–2670 (2015)MathSciNetCrossRefMATH
6.
go back to reference Kazerooni, N.A., Srinivasa, A., Freed, A.: Orthotropic-equivalent strain measures and their application to the elastic response of porcine skin. Mech. Res. Commun. 101, 103404 (2019)CrossRef Kazerooni, N.A., Srinivasa, A., Freed, A.: Orthotropic-equivalent strain measures and their application to the elastic response of porcine skin. Mech. Res. Commun. 101, 103404 (2019)CrossRef
7.
go back to reference Freed, A.D., le Graverend, J.-B., Rajagopal, K.: A decomposition of laplace stretch with applications in inelasticity. Acta Mech. 230(9), 3423–3429 (2019)MathSciNetCrossRefMATH Freed, A.D., le Graverend, J.-B., Rajagopal, K.: A decomposition of laplace stretch with applications in inelasticity. Acta Mech. 230(9), 3423–3429 (2019)MathSciNetCrossRefMATH
8.
go back to reference Freed, A.D., Zamani, S., Szabó, L., Clayton, J.D.: Laplace stretch: Eulerian and Lagrangian formulations. Z. Angew. Math. Phys. 71, 157 (2020)MathSciNetCrossRefMATH Freed, A.D., Zamani, S., Szabó, L., Clayton, J.D.: Laplace stretch: Eulerian and Lagrangian formulations. Z. Angew. Math. Phys. 71, 157 (2020)MathSciNetCrossRefMATH
9.
go back to reference Gao, X.-L., Li, Y.: The upper triangular decomposition of the deformation gradient: possible decompositions of the distortion tensor. Acta Mech. 229(5), 1927–1948 (2018)MathSciNetCrossRefMATH Gao, X.-L., Li, Y.: The upper triangular decomposition of the deformation gradient: possible decompositions of the distortion tensor. Acta Mech. 229(5), 1927–1948 (2018)MathSciNetCrossRefMATH
10.
go back to reference Li, Y., Gao, X.-L.: Constitutive equations for hyperelastic materials based on the upper triangular decomposition of the deformation gradient. Math. Mech. Solids 24(6), 1785–1799 (2019)MathSciNetCrossRefMATH Li, Y., Gao, X.-L.: Constitutive equations for hyperelastic materials based on the upper triangular decomposition of the deformation gradient. Math. Mech. Solids 24(6), 1785–1799 (2019)MathSciNetCrossRefMATH
11.
go back to reference Salamatova, V.Y., Vassilevski, Y.V., Wang, L.: Finite element models of hyperelastic materials based on a new strain measure. Differ. Equ. 54(7), 971–978 (2018)MathSciNetCrossRefMATH Salamatova, V.Y., Vassilevski, Y.V., Wang, L.: Finite element models of hyperelastic materials based on a new strain measure. Differ. Equ. 54(7), 971–978 (2018)MathSciNetCrossRefMATH
12.
go back to reference Annin, B.D., Bagrov, K.V.: Numerical simulation of the hyperelastic material using new strain measure. Acta Mech. 232(5), 1809–1813 (2021)MathSciNetCrossRefMATH Annin, B.D., Bagrov, K.V.: Numerical simulation of the hyperelastic material using new strain measure. Acta Mech. 232(5), 1809–1813 (2021)MathSciNetCrossRefMATH
13.
go back to reference Freed, A.D., Zamani, S.: On the use of convected coordinate systems in the mechanics of continuous media derived from a QR factorization of F. Int. J. Eng. Sci. 127, 145–161 (2018)MathSciNetCrossRefMATH Freed, A.D., Zamani, S.: On the use of convected coordinate systems in the mechanics of continuous media derived from a QR factorization of F. Int. J. Eng. Sci. 127, 145–161 (2018)MathSciNetCrossRefMATH
14.
go back to reference Zamani, S., Paul, S., Kotiya, A.A., Criscione, J.C., Freed, A.D.: Application of QR framework in modeling the constitutive behavior of porcine coronary sinus tissue. Mech. Soft Mater. 3, 7 (2021)CrossRef Zamani, S., Paul, S., Kotiya, A.A., Criscione, J.C., Freed, A.D.: Application of QR framework in modeling the constitutive behavior of porcine coronary sinus tissue. Mech. Soft Mater. 3, 7 (2021)CrossRef
15.
go back to reference Clayton, J., Freed, A.: A constitutive framework for finite viscoelasticity and damage based on the gram-schmidt decomposition. Acta Mech. 231(8), 3319–3362 (2020)MathSciNetCrossRefMATH Clayton, J., Freed, A.: A constitutive framework for finite viscoelasticity and damage based on the gram-schmidt decomposition. Acta Mech. 231(8), 3319–3362 (2020)MathSciNetCrossRefMATH
16.
go back to reference Clayton, J.D., Freed, A.: A constitutive model for lung mechanics and injury applicable to static, dynamic, and shock loading. Mech. Soft Mater. 2, 3 (2020)CrossRef Clayton, J.D., Freed, A.: A constitutive model for lung mechanics and injury applicable to static, dynamic, and shock loading. Mech. Soft Mater. 2, 3 (2020)CrossRef
17.
go back to reference Rivlin, R.S., Saunders, D.: Large elastic deformations of isotropic materials vii experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 243(865), 251–288 (1951)MATH Rivlin, R.S., Saunders, D.: Large elastic deformations of isotropic materials vii experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 243(865), 251–288 (1951)MATH
18.
go back to reference Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34(6), 484–502 (2004)CrossRefMATH Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34(6), 484–502 (2004)CrossRefMATH
19.
go back to reference Kazerooni, N.A., Wang, Z., Srinivasa, A., Criscione, J.: Inferring material parameters from imprecise experiments on soft materials by virtual fields method. Ann. Solid Struct. Mech. 12, 59–72 (2020)CrossRef Kazerooni, N.A., Wang, Z., Srinivasa, A., Criscione, J.: Inferring material parameters from imprecise experiments on soft materials by virtual fields method. Ann. Solid Struct. Mech. 12, 59–72 (2020)CrossRef
20.
go back to reference Promma, N., Raka, B., Grediac, M., Toussaint, E., Le Cam, J.-B., Balandraud, X., Hild, F.: Application of the virtual fields method to mechanical characterization of elastomeric materials. Int. J. Solids Struct. 46(3–4), 698–715 (2009)CrossRefMATH Promma, N., Raka, B., Grediac, M., Toussaint, E., Le Cam, J.-B., Balandraud, X., Hild, F.: Application of the virtual fields method to mechanical characterization of elastomeric materials. Int. J. Solids Struct. 46(3–4), 698–715 (2009)CrossRefMATH
21.
go back to reference Tayeb, A., Le Cam, J.B., Grédiac, M., Toussaint, E., Robin, E., Balandraud, X., Canévet, F.: Identifying hyperelastic constitutive parameters with sensitivity-based virtual fields. Strain 57(6), 12397 (2021)CrossRef Tayeb, A., Le Cam, J.B., Grédiac, M., Toussaint, E., Robin, E., Balandraud, X., Canévet, F.: Identifying hyperelastic constitutive parameters with sensitivity-based virtual fields. Strain 57(6), 12397 (2021)CrossRef
22.
go back to reference Jiang, M., Wang, Z., Freed, A.D., Moreno, M.R., Erel, V., Dubrowski, A.: Extracting material parameters of silicone elastomers under biaxial tensile tests using virtual fields method and investigating the effect of missing deformation data close to specimen edges on parameter identification. Mech. Adv. Mater. Struct. 29(27), 6421–6435 (2022)CrossRef Jiang, M., Wang, Z., Freed, A.D., Moreno, M.R., Erel, V., Dubrowski, A.: Extracting material parameters of silicone elastomers under biaxial tensile tests using virtual fields method and investigating the effect of missing deformation data close to specimen edges on parameter identification. Mech. Adv. Mater. Struct. 29(27), 6421–6435 (2022)CrossRef
23.
go back to reference Criscione, J.C., Douglas, A.S., Hunter, W.C.: Physically based strain invariant set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Solids 49(4), 871–897 (2001)CrossRefMATH Criscione, J.C., Douglas, A.S., Hunter, W.C.: Physically based strain invariant set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Solids 49(4), 871–897 (2001)CrossRefMATH
24.
go back to reference Criscione, J., Hunter, W.: Kinematics and elasticity framework for materials with two fiber families. Continuum Mech. Thermodyn. 15, 613–628 (2003)MathSciNetCrossRefMATH Criscione, J., Hunter, W.: Kinematics and elasticity framework for materials with two fiber families. Continuum Mech. Thermodyn. 15, 613–628 (2003)MathSciNetCrossRefMATH
25.
go back to reference Pierron, F., Grédiac, M.: The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements. Springer, Berlin (2012)CrossRef Pierron, F., Grédiac, M.: The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements. Springer, Berlin (2012)CrossRef
26.
go back to reference Martins, J., Andrade-Campos, A., Thuillier, S.: Calibration of anisotropic plasticity models using a biaxial test and the virtual fields method. Int. J. Solids Struct. 172, 21–37 (2019)CrossRef Martins, J., Andrade-Campos, A., Thuillier, S.: Calibration of anisotropic plasticity models using a biaxial test and the virtual fields method. Int. J. Solids Struct. 172, 21–37 (2019)CrossRef
27.
go back to reference Marek, A., Davis, F.M., Rossi, M., Pierron, F.: Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity. Int. J. Mater. Form. 12(3), 457–476 (2019)CrossRef Marek, A., Davis, F.M., Rossi, M., Pierron, F.: Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity. Int. J. Mater. Form. 12(3), 457–476 (2019)CrossRef
28.
go back to reference Jiang, M., Sridhar, R.L., Robbins, A.B., Freed, A.D., Moreno, M.R.: A versatile biaxial testing platform for soft tissues. J. Mech. Behav. Biomed. Mater. 114, 104144 (2021)CrossRef Jiang, M., Sridhar, R.L., Robbins, A.B., Freed, A.D., Moreno, M.R.: A versatile biaxial testing platform for soft tissues. J. Mech. Behav. Biomed. Mater. 114, 104144 (2021)CrossRef
29.
go back to reference Blaber, J., Adair, B., Antoniou, A.: Ncorr: open-source 2d digital image correlation matlab software. Exp. Mech. 55(6), 1105–1122 (2015)CrossRef Blaber, J., Adair, B., Antoniou, A.: Ncorr: open-source 2d digital image correlation matlab software. Exp. Mech. 55(6), 1105–1122 (2015)CrossRef
30.
go back to reference Jiang, M., Dai, J., Dong, G., Wang, Z.: A comparative study of invariant-based hyperelastic models for silicone elastomers under biaxial deformation with the virtual fields method. J. Mech. Behav. Biomed. Mater. 136, 105522 (2022)CrossRef Jiang, M., Dai, J., Dong, G., Wang, Z.: A comparative study of invariant-based hyperelastic models for silicone elastomers under biaxial deformation with the virtual fields method. J. Mech. Behav. Biomed. Mater. 136, 105522 (2022)CrossRef
31.
go back to reference Rossi, M., Pierron, F., Štamborská, M.: Application of the virtual fields method to large strain anisotropic plasticity. Int. J. Solids Struct. 97, 322–335 (2016)CrossRef Rossi, M., Pierron, F., Štamborská, M.: Application of the virtual fields method to large strain anisotropic plasticity. Int. J. Solids Struct. 97, 322–335 (2016)CrossRef
Metadata
Title
Reformulation of the virtual fields method using the variation of elastic energy for parameter identification of decomposition-based hyperelastic models
Authors
Mingliang Jiang
Xinwei Du
Arun Srinivasa
Jimin Xu
Zhujiang Wang
Publication date
25-06-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 10/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03626-y

Other articles of this Issue 10/2023

Acta Mechanica 10/2023 Go to the issue

Premium Partners