Abstract
A minimum-time lane change maneuver is executed under friction-limited conditions using (1) the Modified Hamiltonian Algorithm (MHA) suitable for real-time control and (2) numerical optimization for comparison. A key variable is the switching time of the acceleration reference in MHA. Considering that MHA is based on an approximate vehicle model to target real-time control, it cannot exactly match the ideal reference as obtained from offline optimization; this paper shows that incorporation of a limited-jerk condition successfully predicts the switching time and that the desired lane position is reached in near minimum time.