Skip to main content
Top

2018 | OriginalPaper | Chapter

20. Real-Time Signal Processing on Field Programmable Gate Array Hardware

Author : Florian Pfeifle

Published in: Springer Handbook of Systematic Musicology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the last 50 years, advances in high-speed digital signal processing (DSP) and numerical methods for audio signal processing in general were fueled by the rising processing capabilities of personal computers (PCs). Added to this was the advent of specialized coprocessing platforms like general purpose graphics processing units (GPGPUs), central processing unit (CPU)-based accelerators like Intel's Xeon Phi platforms as well as high-performance digital signal processing (DSP) chips like Analog Devices' TigerSHARC. Still, there are applications that are not realizable on the mentioned devices in real time or even close to real time. This chapter gives an introduction to field programmable gate array (FPGA) hardware, a flexible computing platform with massively parallel logic capability that is applicable for problems of high data throughput, high clock rates and high parallelism. After an introduction to the basic structure of FPGAs, several features that enable high-throughput DSP applications are highlighted. An introduction to development platforms as well as the development methodology is given, along with an overview of current FPGA devices and their specific capabilities. Two application examples and an outlook and summary complete this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
20.1
go back to reference Cisco: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020 White Paper (Cisco Systems Inc., San Jose 2016) Cisco: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020 White Paper (Cisco Systems Inc., San Jose 2016)
20.2
go back to reference A. Brandt: Noise and Vibration Analysis: Signal Analysis and Experimental Procedures (Wiley, Chichester 2011)CrossRef A. Brandt: Noise and Vibration Analysis: Signal Analysis and Experimental Procedures (Wiley, Chichester 2011)CrossRef
20.3
go back to reference E.S. Gopi: Digital Signal Processing for Medical Imaging Using MATLAB (Springer, New York 2013)CrossRef E.S. Gopi: Digital Signal Processing for Medical Imaging Using MATLAB (Springer, New York 2013)CrossRef
20.4
go back to reference U. Zölzer, X. Amatriain, D. Arfib, J. Bonada, G. De Poli, P. Dutilleux, G. Evangelista, F. Keiler, A. Loscos, D. Rocchesso, M. Sandler, X. Serra, T. Todoroff: DAFX: Digital Audio Effects (Wiley, Chichester 2002) U. Zölzer, X. Amatriain, D. Arfib, J. Bonada, G. De Poli, P. Dutilleux, G. Evangelista, F. Keiler, A. Loscos, D. Rocchesso, M. Sandler, X. Serra, T. Todoroff: DAFX: Digital Audio Effects (Wiley, Chichester 2002)
20.5
go back to reference M. Holters, U. Zölzer: Physical modelling of a wah-wah effect pedal as a case study for application of of the nodal DK method to circuits with variable parts. In: Proc. 14th Int. Conf. Digit. Audio Eff. DAFx-11 (2011) pp. 31–35 M. Holters, U. Zölzer: Physical modelling of a wah-wah effect pedal as a case study for application of of the nodal DK method to circuits with variable parts. In: Proc. 14th Int. Conf. Digit. Audio Eff. DAFx-11 (2011) pp. 31–35
20.6
go back to reference D. Arfib: Different ways to write digital audio effects programs. In: Proc. Digit. Audio Eff. (DAFx-98), Barcelona (1998) pp. 188–191 D. Arfib: Different ways to write digital audio effects programs. In: Proc. Digit. Audio Eff. (DAFx-98), Barcelona (1998) pp. 188–191
20.7
go back to reference K. Zuse: Der Computer - Mein Lebenswerk (Springer, Berlin, Heidelberg 2010)CrossRef K. Zuse: Der Computer - Mein Lebenswerk (Springer, Berlin, Heidelberg 2010)CrossRef
20.8
go back to reference J. Fowers, G. Brown, P. Cooke, G. Stitt: A performance and energy comparison of FPGAs, GPUs, and multicores for sliding-window applications. In: Proc. ACM/SIGDA Int. Symp. Field Prog. Gate Arrays (ACM, New York 2012) pp. 47–56 J. Fowers, G. Brown, P. Cooke, G. Stitt: A performance and energy comparison of FPGAs, GPUs, and multicores for sliding-window applications. In: Proc. ACM/SIGDA Int. Symp. Field Prog. Gate Arrays (ACM, New York 2012) pp. 47–56
20.9
go back to reference G.W. Leibnitz: Explication de lárithmétique binaire, Mem. Acad. R. Sci. 3, 85–93 (1703) G.W. Leibnitz: Explication de lárithmétique binaire, Mem. Acad. R. Sci. 3, 85–93 (1703)
20.10
go back to reference F. Perkins: Leibniz and China: A Commerce of Light (Cambridge Univ. Press, Cambridge 2009) F. Perkins: Leibniz and China: A Commerce of Light (Cambridge Univ. Press, Cambridge 2009)
20.11
go back to reference G. Boole: The Mathematical Analysis of Logic (Philosophical Library, New York 1847)MATH G. Boole: The Mathematical Analysis of Logic (Philosophical Library, New York 1847)MATH
20.12
go back to reference G. Boole: An Investigation of the Laws of Thought: On Which are Founded the Mathematical Theories of Logic and Probabilities (Dover, Mineola 1854)MATH G. Boole: An Investigation of the Laws of Thought: On Which are Founded the Mathematical Theories of Logic and Probabilities (Dover, Mineola 1854)MATH
20.14
20.15
go back to reference C.E. Shannon: A Symbolic Analysis of Relay and Switching Circuits, Ph.D. Thesis (Massachusetts Insitute of Technology, Cambridge 1940) C.E. Shannon: A Symbolic Analysis of Relay and Switching Circuits, Ph.D. Thesis (Massachusetts Insitute of Technology, Cambridge 1940)
20.16
go back to reference B.J. Copeland (Ed.): Colossus: The Secrets of Bletchley Park’s Codebreaking Computers (Oxford Univ. Press, Oxford 2006) B.J. Copeland (Ed.): Colossus: The Secrets of Bletchley Park’s Codebreaking Computers (Oxford Univ. Press, Oxford 2006)
20.17
go back to reference P.E. Ceruzzi: Computing: A Concise History, The MIT Press Essential Knowledge Series (MIT Press, Cambridge 2012) P.E. Ceruzzi: Computing: A Concise History, The MIT Press Essential Knowledge Series (MIT Press, Cambridge 2012)
20.18
go back to reference C. Maxfield: The Design Warriors Guide to FPGAs (Elsevier, Oxford 2004) C. Maxfield: The Design Warriors Guide to FPGAs (Elsevier, Oxford 2004)
20.20
go back to reference L. Pantaleone, E. Todorivich: Accelerating embedded software processing in a FPGA with PowerPC and Microblaze. In: Natl. Conf. Inform. Eng. Inf. Syst., San Louis (2013) L. Pantaleone, E. Todorivich: Accelerating embedded software processing in a FPGA with PowerPC and Microblaze. In: Natl. Conf. Inform. Eng. Inf. Syst., San Louis (2013)
20.23
go back to reference Xilinx: Configurable Logic Block User Guide (Xilinx, San Jose 2010) Xilinx: Configurable Logic Block User Guide (Xilinx, San Jose 2010)
20.24
go back to reference Xilinx: Virtex-6 FPGA Configurable Logic Block User Guide (Xilinx, San Jose 2012) Xilinx: Virtex-6 FPGA Configurable Logic Block User Guide (Xilinx, San Jose 2012)
20.25
go back to reference Altera: Stratix V Device Handbook (Altera, San Jose 2015) Altera: Stratix V Device Handbook (Altera, San Jose 2015)
20.26
go back to reference D.S. Brown, G.Z. Vranesic: Fundamentals of Digital Logic with VHDL Design, McGraw-Hill Series in Electrical and Computer Engineering, 3rd edn. (McGraw-Hill, New York 2009) D.S. Brown, G.Z. Vranesic: Fundamentals of Digital Logic with VHDL Design, McGraw-Hill Series in Electrical and Computer Engineering, 3rd edn. (McGraw-Hill, New York 2009)
20.27
go back to reference A.V. Pedroni: Circuit Design with VHDL (MIT Press, Cambridge 2004) A.V. Pedroni: Circuit Design with VHDL (MIT Press, Cambridge 2004)
20.28
go back to reference J. Reichardt, B. Schwarz: VHDL-Synthese: Entwurf digitaler Schaltungen und Systeme, 4th edn. (Oldenbourg, München 2009)CrossRef J. Reichardt, B. Schwarz: VHDL-Synthese: Entwurf digitaler Schaltungen und Systeme, 4th edn. (Oldenbourg, München 2009)CrossRef
20.29
go back to reference J.P. Ashenden: The Designer’s Guide to VHDL, 3rd edn. (Morgan Kaufmann, San Francisco 2010) J.P. Ashenden: The Designer’s Guide to VHDL, 3rd edn. (Morgan Kaufmann, San Francisco 2010)
20.30
go back to reference P. Pong: FPGA Prototyping by VHDL Examples (Wiley-Interscience, Hoboken 2008) P. Pong: FPGA Prototyping by VHDL Examples (Wiley-Interscience, Hoboken 2008)
20.31
go back to reference M. Zwoliński: Digital System Design with VHDL, 2nd edn. (Prentice Hall, Harlow 2004) M. Zwoliński: Digital System Design with VHDL, 2nd edn. (Prentice Hall, Harlow 2004)
20.32
go back to reference J.P. Ashenden: The Designer’s Guide to VHDL, 2nd edn. (Morgan Kaufmann, San Francisco 2002) J.P. Ashenden: The Designer’s Guide to VHDL, 2nd edn. (Morgan Kaufmann, San Francisco 2002)
20.33
go back to reference A.H. Wilen, J.P. Schade, R. Thornburg: Introduction to PCI Express: A Hardware and Software Developer’s Guide, Engineer to Engineer Series (Intel, Santa Clara 2003) A.H. Wilen, J.P. Schade, R. Thornburg: Introduction to PCI Express: A Hardware and Software Developer’s Guide, Engineer to Engineer Series (Intel, Santa Clara 2003)
20.35
go back to reference H. Liebig, T. Flik, M. Menge: Mikroprozessortechnik und Rechnerstrukturen (Springer, London 2005) H. Liebig, T. Flik, M. Menge: Mikroprozessortechnik und Rechnerstrukturen (Springer, London 2005)
20.36
go back to reference C.M. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model, D. DiSabello: Achieving high performance with FPGA-based computing, Computer 40, 50–57 (2007)CrossRef C.M. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model, D. DiSabello: Achieving high performance with FPGA-based computing, Computer 40, 50–57 (2007)CrossRef
20.37
go back to reference U.M. Baese: Digital Signal Processing with Field Programmable Gate Arrays, 2nd edn. (Springer, Berlin, Heidelberg 2007)MATH U.M. Baese: Digital Signal Processing with Field Programmable Gate Arrays, 2nd edn. (Springer, Berlin, Heidelberg 2007)MATH
20.38
go back to reference R. Woods (Ed.): FPGA-Based Implementation of Signal Processing Systems (Wiley, Chichester 2008) R. Woods (Ed.): FPGA-Based Implementation of Signal Processing Systems (Wiley, Chichester 2008)
20.39
go back to reference B.A. Kahng, J. Lienig, L.I. Markov, J. Hu: VLSI Physical Design: From Graph Partitioning to Timing Closure (Springer, Dordrecht 2011)CrossRef B.A. Kahng, J. Lienig, L.I. Markov, J. Hu: VLSI Physical Design: From Graph Partitioning to Timing Closure (Springer, Dordrecht 2011)CrossRef
20.40
go back to reference K. Veggeberg, A. Zheng: Real-time noise source identification using programmable gate array FPGA technology, Proc. Meet. Acoust. 5, 2582 (2009) K. Veggeberg, A. Zheng: Real-time noise source identification using programmable gate array FPGA technology, Proc. Meet. Acoust. 5, 2582 (2009)
20.41
go back to reference C. Hai, W. Ping: The high speed implementation of direction-of-arrival estimation algorithm, IEEE Int. Conf. Commun. Circuits Syst. West Sino Expo. 2, 922–925 (2002) C. Hai, W. Ping: The high speed implementation of direction-of-arrival estimation algorithm, IEEE Int. Conf. Commun. Circuits Syst. West Sino Expo. 2, 922–925 (2002)
20.42
go back to reference P. Chen, X. Tian, Y. Chen, X. Yang: Delay-sum beamforming on FPGA. In: ICSP 2008 Proc. (2008) pp. 2542–2545 P. Chen, X. Tian, Y. Chen, X. Yang: Delay-sum beamforming on FPGA. In: ICSP 2008 Proc. (2008) pp. 2542–2545
20.43
go back to reference A. Madanayake, L. Bruton, F. Comis, C. Comis: FPGA architectures for real-time 2D/3D FIR/IIR plane wave filters. In: Proc. Int. Symp. Circuits Syst. ISCAS, Vol. 3 (2004) A. Madanayake, L. Bruton, F. Comis, C. Comis: FPGA architectures for real-time 2D/3D FIR/IIR plane wave filters. In: Proc. Int. Symp. Circuits Syst. ISCAS, Vol. 3 (2004)
20.44
go back to reference S. Kai, Y. Xu, S. Jiang, H. Zhu: Converting analog controllers to digital controllers with FPGA. In: 9th Int. Conf. Signal Process. (2008) S. Kai, Y. Xu, S. Jiang, H. Zhu: Converting analog controllers to digital controllers with FPGA. In: 9th Int. Conf. Signal Process. (2008)
20.46
go back to reference T. Brich, K. Novacek, A. Khateb: The digital signal processing using FPGA. In: ISSE 2006, 29th Int. Spring Semin. Electron. Technol. (2006) pp. 322–324CrossRef T. Brich, K. Novacek, A. Khateb: The digital signal processing using FPGA. In: ISSE 2006, 29th Int. Spring Semin. Electron. Technol. (2006) pp. 322–324CrossRef
20.47
go back to reference M. Liu, W. Kuehn, Z. Lu, A. Jantsch: System-on-an-FPGA design for real-time particle track recognition in physics experiments. In: 11th Euromicro Conf. Digit. Syst. Design Archit., Methods Tools (2008) M. Liu, W. Kuehn, Z. Lu, A. Jantsch: System-on-an-FPGA design for real-time particle track recognition in physics experiments. In: 11th Euromicro Conf. Digit. Syst. Design Archit., Methods Tools (2008)
20.48
go back to reference B. von Herzen: Signal processing at 250 mHz using high-performance FPGA’s, IEEE Trans. Very Large Scale Int. (VLSI) Syst. 6(2), 238–246 (1998)CrossRef B. von Herzen: Signal processing at 250 mHz using high-performance FPGA’s, IEEE Trans. Very Large Scale Int. (VLSI) Syst. 6(2), 238–246 (1998)CrossRef
20.49
go back to reference Z. Wang, R. Jin, J. Geng, Y. Fan: FPGA implementation of downlink DBF calibration. In: Antennas Propag. Soc. Int. Symp. (2005) Z. Wang, R. Jin, J. Geng, Y. Fan: FPGA implementation of downlink DBF calibration. In: Antennas Propag. Soc. Int. Symp. (2005)
20.50
go back to reference K.H. Moustafa, M.F. Ahmed, M. Romeh, A. Fahmy: Real time processing of a lattice wave digital matched filter. In: IEEE Int. Symp. Signal Process. Inf. Techol. ISSPIT (2011) pp. 404–408 K.H. Moustafa, M.F. Ahmed, M. Romeh, A. Fahmy: Real time processing of a lattice wave digital matched filter. In: IEEE Int. Symp. Signal Process. Inf. Techol. ISSPIT (2011) pp. 404–408
20.52
go back to reference H.P. Afshar, P. Ienne: Highly versatile DSP blocks for improved FPGA arithmetic performance. In: Proc. IEEE Symp. Field-Prog. Custom Comput. Mach. FCCM (2010) pp. 29–236 H.P. Afshar, P. Ienne: Highly versatile DSP blocks for improved FPGA arithmetic performance. In: Proc. IEEE Symp. Field-Prog. Custom Comput. Mach. FCCM (2010) pp. 29–236
20.53
go back to reference L. Struyf, S. De Beugher, D.H. Van Uytsel, F. Kanters, T. Goedemé: The battle of the giants: A case study of GPU vs FPGA optimisation for real-time image processing, Proc. PECCS 1, 112–119 (2014) L. Struyf, S. De Beugher, D.H. Van Uytsel, F. Kanters, T. Goedemé: The battle of the giants: A case study of GPU vs FPGA optimisation for real-time image processing, Proc. PECCS 1, 112–119 (2014)
20.54
go back to reference W. Chen, P. Kosmas, M. Leeser, C. Rappaport: An FPGA implementation of the two-dimensional finite-difference time-domain (FDTD) algorithm. In: Proc. 2004 (ACM/SIGDA) 12th Int. Symp. Field Prog. Gate Arrays, New York (2004) pp. 213–222 W. Chen, P. Kosmas, M. Leeser, C. Rappaport: An FPGA implementation of the two-dimensional finite-difference time-domain (FDTD) algorithm. In: Proc. 2004 (ACM/SIGDA) 12th Int. Symp. Field Prog. Gate Arrays, New York (2004) pp. 213–222
20.55
go back to reference J.A. Gibbons, D.M. Howard, A.M. Tyrrell: FPGA implementation of 1d wave equation for real-time audio synthesis, IEEE Proc. Comput. Digit. Tech. 152(5), 619–631 (2005)CrossRef J.A. Gibbons, D.M. Howard, A.M. Tyrrell: FPGA implementation of 1d wave equation for real-time audio synthesis, IEEE Proc. Comput. Digit. Tech. 152(5), 619–631 (2005)CrossRef
20.56
go back to reference E. Motuk, R. Woods, S. Bilbao: Implementation of finite-differece schemes for the wave equation on FPGA. In: IEEE Int. Acoust. Speech Signal Process. ICASSP (2005) p. 3 E. Motuk, R. Woods, S. Bilbao: Implementation of finite-differece schemes for the wave equation on FPGA. In: IEEE Int. Acoust. Speech Signal Process. ICASSP (2005) p. 3
20.57
go back to reference E. Motuk, R. Woods, S. Bilbao, J. McAllistere: Design methodology for real-time FPGA-based sound synthesis, IEEE Trans. Signal Process. 55(12), 5833–5845 (2007)MathSciNetCrossRef E. Motuk, R. Woods, S. Bilbao, J. McAllistere: Design methodology for real-time FPGA-based sound synthesis, IEEE Trans. Signal Process. 55(12), 5833–5845 (2007)MathSciNetCrossRef
20.58
go back to reference H.E. Motuk: System-On-Chip Implementation of Real-Time Finite Difference Based Sound Synthesis, Ph.D. Thesis (Queen’s Univ., Belfast 2006) H.E. Motuk: System-On-Chip Implementation of Real-Time Finite Difference Based Sound Synthesis, Ph.D. Thesis (Queen’s Univ., Belfast 2006)
20.59
go back to reference G. Martins, M. Barata, L. Gomes: Low cost method to reproduce sound with FPGA. In: IEEE Int. Symp. Ind. Electron. ISIE (2008) G. Martins, M. Barata, L. Gomes: Low cost method to reproduce sound with FPGA. In: IEEE Int. Symp. Ind. Electron. ISIE (2008)
20.60
go back to reference F. Pfeifle, R. Bader: Real-time finite difference physical models of musical instruments on a field programmable gate array (fpga). In: Proc. Int. Conf. Digit. Audio Eff. (DAFx-12), New York (2012) pp. 63–70 F. Pfeifle, R. Bader: Real-time finite difference physical models of musical instruments on a field programmable gate array (fpga). In: Proc. Int. Conf. Digit. Audio Eff. (DAFx-12), New York (2012) pp. 63–70
20.61
go back to reference F. Pfeifle, R. Bader: Real-time finite difference method physical modeling of musical instruments using field-programmable gate array hardware, J. Audio Eng. Soc. 63(12), 1001–1016 (2015)CrossRef F. Pfeifle, R. Bader: Real-time finite difference method physical modeling of musical instruments using field-programmable gate array hardware, J. Audio Eng. Soc. 63(12), 1001–1016 (2015)CrossRef
20.62
go back to reference K. Kroschel, K.-D. Kammeyer: Digitale Signalverarbeitung – Filterung und Spektralanalyse mit MATLAB-Übungen, 6th edn. (Vieweg+Teubner, Wiesbaden 2006)MATH K. Kroschel, K.-D. Kammeyer: Digitale Signalverarbeitung – Filterung und Spektralanalyse mit MATLAB-Übungen, 6th edn. (Vieweg+Teubner, Wiesbaden 2006)MATH
20.63
go back to reference N.T. Rajapaksha, C. Wijenayake, A. Madanayake, L.T. Bruton: Raster-scanned wave-digital filter architectures for multi-beam 2d IIR broadband beamforming. In: Proc. Int. Conf. Microelectron. ICM (2010) pp. 112–115 N.T. Rajapaksha, C. Wijenayake, A. Madanayake, L.T. Bruton: Raster-scanned wave-digital filter architectures for multi-beam 2d IIR broadband beamforming. In: Proc. Int. Conf. Microelectron. ICM (2010) pp. 112–115
20.65
go back to reference S. Bilbao: Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics (Wiley, Chichester 2009)CrossRef S. Bilbao: Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics (Wiley, Chichester 2009)CrossRef
20.66
go back to reference F. Pfeifle, R. Bader: Musical Acoustics, Neurocognition and Psychology of Music, Chapter Real-Time Physical Modelling of a Real Banjo Geometry Using FPGA Hardware Technology (Rolf Bader, Frankfurt am Main 2009) pp. 71–86 F. Pfeifle, R. Bader: Musical Acoustics, Neurocognition and Psychology of Music, Chapter Real-Time Physical Modelling of a Real Banjo Geometry Using FPGA Hardware Technology (Rolf Bader, Frankfurt am Main 2009) pp. 71–86
20.67
go back to reference F. Pfeifle, R. Bader: Real-time virtual banjo model and measurements using a microphone array, J. Acoust. Soc. Am. 125(4), 2515–2515 (2009)CrossRef F. Pfeifle, R. Bader: Real-time virtual banjo model and measurements using a microphone array, J. Acoust. Soc. Am. 125(4), 2515–2515 (2009)CrossRef
20.68
go back to reference F. Pfeifle, R. Bader: Membrane modes and air resonances of the banjo using physical modeling and microphone array measurements, J. Acoust. Soc. Am. 127(3), 1870–1870 (2010)CrossRef F. Pfeifle, R. Bader: Membrane modes and air resonances of the banjo using physical modeling and microphone array measurements, J. Acoust. Soc. Am. 127(3), 1870–1870 (2010)CrossRef
20.69
go back to reference S. Bilbao: Robust physical modeling sound synthesis for nonlinear systems, IEEE Signal Process. Mag. 24(2), 32–41 (2007)CrossRef S. Bilbao: Robust physical modeling sound synthesis for nonlinear systems, IEEE Signal Process. Mag. 24(2), 32–41 (2007)CrossRef
20.70
go back to reference C. Jordan: Calculus of Finite Differences (Chelsea, New York 1950)MATH C. Jordan: Calculus of Finite Differences (Chelsea, New York 1950)MATH
20.71
go back to reference J. Strikwerda: Finite Difference Schemes and Partial Differential Equations, 2nd edn. (SIAM, Philadelphia 2005)MATH J. Strikwerda: Finite Difference Schemes and Partial Differential Equations, 2nd edn. (SIAM, Philadelphia 2005)MATH
20.72
go back to reference E. Hairer, C. Lubich, G. Wanner: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, Vol. 31 (Springer, Berlin, Heidelberg 2002)MATH E. Hairer, C. Lubich, G. Wanner: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, Vol. 31 (Springer, Berlin, Heidelberg 2002)MATH
20.73
go back to reference R. Bader: Computational Mechanics of the Classical Guitar (Springer, Berlin, Heidelberg 2005) R. Bader: Computational Mechanics of the Classical Guitar (Springer, Berlin, Heidelberg 2005)
20.74
go back to reference R. Bader: Nonlinearities in the sound production of the classical guitar. In: Proc. Forum Acust. 2005 (2005) pp. 685–689 R. Bader: Nonlinearities in the sound production of the classical guitar. In: Proc. Forum Acust. 2005 (2005) pp. 685–689
20.75
go back to reference B.E. Moore: Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations, Math. Comput. Simul. 80(1), 20–28 (2009)MathSciNetCrossRef B.E. Moore: Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations, Math. Comput. Simul. 80(1), 20–28 (2009)MathSciNetCrossRef
20.76
go back to reference D.W. Markiewicz: Survey on Symplectic Integrators (Univ. California, Berkeley 1999) preprint D.W. Markiewicz: Survey on Symplectic Integrators (Univ. California, Berkeley 1999) preprint 
20.77
20.79
go back to reference L. Verlet: Computer ``experiments'' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159(1), 98–103 (1967)CrossRef L. Verlet: Computer ``experiments'' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159(1), 98–103 (1967)CrossRef
20.80
20.81
go back to reference M. Campbell, P. Campbell: The Science of String Instruments (Springer, New York 2010) pp. 301–315CrossRef M. Campbell, P. Campbell: The Science of String Instruments (Springer, New York 2010) pp. 301–315CrossRef
20.82
go back to reference B. Geiser: Studien zur Frühgeschichte der Violine. In: Publikationen der Schweizerischen Musikforschenden Gesellschaft, Serie 2 (Gemeinsamer Bibliotheksverbund (GBV)/Verbundzentrale des GBV (VZG), Bern 1974) B. Geiser: Studien zur Frühgeschichte der Violine. In: Publikationen der Schweizerischen Musikforschenden Gesellschaft, Serie 2 (Gemeinsamer Bibliotheksverbund (GBV)/Verbundzentrale des GBV (VZG), Bern 1974)
20.83
go back to reference D.D. Boyden: The History of Violin Playing from Its Origins to 1761, and Its Relationship to the Violin and Violin Music (Oxford Univ. Press, Oxford 1967) D.D. Boyden: The History of Violin Playing from Its Origins to 1761, and Its Relationship to the Violin and Violin Music (Oxford Univ. Press, Oxford 1967)
20.84
go back to reference K.C. Wali: Cremona Violins: A Physicist’s Quest for the Secrets of Stradivari (World Scientific, Hackensack 2010) K.C. Wali: Cremona Violins: A Physicist’s Quest for the Secrets of Stradivari (World Scientific, Hackensack 2010)
20.85
go back to reference D. Ullmann: Chladni und die Entwicklung der Akustik von 1750–1860 (Birkhäuser, Basel 1996)CrossRef D. Ullmann: Chladni und die Entwicklung der Akustik von 1750–1860 (Birkhäuser, Basel 1996)CrossRef
20.86
go back to reference H. von Helmholtz: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (Friedrich Vieweg und Sohn, Braunschweig 1896)MATH H. von Helmholtz: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (Friedrich Vieweg und Sohn, Braunschweig 1896)MATH
20.87
go back to reference L. Cremer: Physik der Geige (Hirzel, Stuttgart 1981) L. Cremer: Physik der Geige (Hirzel, Stuttgart 1981)
20.88
go back to reference G. Bissinger, E.G. Williams, N. Valdivia: Violin f-hole contribution to far-field radiation via patch near-field acoustical holography, J. Acoust. Soc. Am. 121(6), 3899–3906 (2007)CrossRef G. Bissinger, E.G. Williams, N. Valdivia: Violin f-hole contribution to far-field radiation via patch near-field acoustical holography, J. Acoust. Soc. Am. 121(6), 3899–3906 (2007)CrossRef
20.89
go back to reference G. Bissinger: The Science of String Instruments (Springer, New York 2010) pp. 317–345CrossRef G. Bissinger: The Science of String Instruments (Springer, New York 2010) pp. 317–345CrossRef
20.90
go back to reference H.N. Fletcher, T.D. Rossing: Physics of Musical Instruments, 2nd edn. (Springer, New York 2000)MATH H.N. Fletcher, T.D. Rossing: Physics of Musical Instruments, 2nd edn. (Springer, New York 2000)MATH
20.91
go back to reference C.M. Hutchins: Klang und Akustik der Geige, Spektrum Wiss. 2, 112–122 (1981) C.M. Hutchins: Klang und Akustik der Geige, Spektrum Wiss. 2, 112–122 (1981)
20.92
go back to reference J.-L. Florens: Expressive bowing on a virtual string instrument, Lect. Notes Comput. Sci. 2915, 487–496 (2004)CrossRef J.-L. Florens: Expressive bowing on a virtual string instrument, Lect. Notes Comput. Sci. 2915, 487–496 (2004)CrossRef
20.93
go back to reference M. Demoucron: On the Control of Virtual Violins – Physical Modelling and Control of Bowed String Instruments, PhD Thesis (Université Pierre et Marie Curie – Paris VI, Royal Institute of Technology, Stockholm 2008) M. Demoucron: On the Control of Virtual Violins – Physical Modelling and Control of Bowed String Instruments, PhD Thesis (Université Pierre et Marie Curie – Paris VI, Royal Institute of Technology, Stockholm 2008)
20.94
go back to reference E. Maestre: Analysis/synthesis of bowing control applied to violin sound rendering via physical models, Proc. Meet. Acoust. 19(1), 3271 (2013) E. Maestre: Analysis/synthesis of bowing control applied to violin sound rendering via physical models, Proc. Meet. Acoust. 19(1), 3271 (2013)
20.95
go back to reference J. Woodhouse, P.M. Galluzo: The bowed string as we know it today, Acta Acust. united Acust. 90, 579–589 (2004) J. Woodhouse, P.M. Galluzo: The bowed string as we know it today, Acta Acust. united Acust. 90, 579–589 (2004)
20.96
go back to reference E. Bavu, J. Smith, J. Wolfe: Torsional waves in a bowed string, Acta Acust. united Acust. 91, 241–246 (2005) E. Bavu, J. Smith, J. Wolfe: Torsional waves in a bowed string, Acta Acust. united Acust. 91, 241–246 (2005)
20.97
go back to reference A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95(2), 1112–1118 (1994)CrossRef A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95(2), 1112–1118 (1994)CrossRef
20.98
go back to reference J. Bensa, S. Bilbao, R. Kronland-Martinet, J.O. Smith III: The simulation of piano string vibration: From physical models to finite difference schemes and digital waveguides, J. Acoust. Soc. Am. 114(2), 1095–1107 (2003)CrossRef J. Bensa, S. Bilbao, R. Kronland-Martinet, J.O. Smith III: The simulation of piano string vibration: From physical models to finite difference schemes and digital waveguides, J. Acoust. Soc. Am. 114(2), 1095–1107 (2003)CrossRef
20.99
go back to reference H.N. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1998)CrossRef H.N. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1998)CrossRef
20.100
go back to reference F. Pfeifle, R. Bader: Real-time finite-difference string-bow interaction field programmable gate array (fpga) model coupled to a violin body, J. Acoust. Soc. Am. 130(4), 2507–2507 (2011)CrossRef F. Pfeifle, R. Bader: Real-time finite-difference string-bow interaction field programmable gate array (fpga) model coupled to a violin body, J. Acoust. Soc. Am. 130(4), 2507–2507 (2011)CrossRef
20.101
go back to reference J. Woodhouse: On the ‘‘bridge hill’’ of the violin, Acta Acust. united Acust. 91, 155–165 (2005) J. Woodhouse: On the ‘‘bridge hill’’ of the violin, Acta Acust. united Acust. 91, 155–165 (2005)
Metadata
Title
Real-Time Signal Processing on Field Programmable Gate Array Hardware
Author
Florian Pfeifle
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55004-5_20

Premium Partners