Skip to main content
Top

2018 | OriginalPaper | Chapter

Reconciliation Feasibility of Non-binary Gene Trees Under a Duplication-Loss-Coalescence Model

Authors : Ricson Cheng, Matthew Dohlen, Chen Pekker, Gabriel Quiroz, Jincheng Wang, Ran Libeskind-Hadas, Yi-Chieh Wu

Published in: Algorithms for Computational Biology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Phylogenetic tree reconciliation is a widely-used method to understand gene family evolution. For eukaryotes, the duplication-loss-coalescence (DLC) model seeks to explain incongruence between gene trees and species trees by postulating gene duplication, gene loss, and deep coalescence events. While efficient algorithms exist for inferring optimal DLC reconciliations, they assume that only one individual is sampled per species. In recent work, we demonstrated that with additional samples, there exist gene tree topologies that are impossible to reconcile with any species tree. However, our algorithm required the gene tree to be binary whereas, in practice, gene trees are often non-binary due to uncertainty in the reconstruction process. In this work, we consider for the first time reconciliation under the DLC model with non-binary gene trees. Specifically, we describe an efficient algorithm that takes as input an arbitrary gene tree with an arbitrary number of samples per species and either (1) determines that there is a valid reconcilable binary resolution of that tree and constructs one such resolution or (2) determines that there exists no valid reconcilable binary resolution of that tree. Our work makes it possible to systematically analyze non-binary gene trees and will help biologists identify incorrect gene tree topologies and thus avoid incorrect evolutionary inferences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Branch lengths are not used in this work, so a tree always refers to a tree topology.
 
2
The proof considers only the single unique path between two genes in a binary tree.
 
3
Note that this locus tree is distinct from the locus tree of Rasmussen and Kellis [25].
 
4
For example, in Fig. 3, swapping leaves labeled \(a_2\) with leaves labeled \(c_1\) would result in an irreconcilable LEG and thus a multifurcating gene tree for which there exists no reconcilable binarization.
 
5
While most reconciliation algorithms do not support multiple samples per species nor non-binary gene trees, the former extension is fairly straightforward while the latter requires new algorithms.
 
Literature
1.
go back to reference Åkerborg, Ö., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc. Nat. Acad. Sci. USA 106(14), 5714–5719 (2009)CrossRef Åkerborg, Ö., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc. Nat. Acad. Sci. USA 106(14), 5714–5719 (2009)CrossRef
2.
go back to reference Albalat, R., Cañestro, C.: Evolution by gene loss. Nat. Rev. Genet. 17, 379 (2016)CrossRef Albalat, R., Cañestro, C.: Evolution by gene loss. Nat. Rev. Genet. 17, 379 (2016)CrossRef
3.
go back to reference Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), i283–i291 (2012)CrossRef Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), i283–i291 (2012)CrossRef
4.
go back to reference Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 60(2), 117–125 (2011)CrossRef Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 60(2), 117–125 (2011)CrossRef
6.
go back to reference Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication, speciation, and loss. J. Comput. Biol. 15(8), 1043–1062 (2008)MathSciNetCrossRef Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication, speciation, and loss. J. Comput. Biol. 15(8), 1043–1062 (2008)MathSciNetCrossRef
7.
go back to reference Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7(3–4), 429–447 (2000)CrossRef Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7(3–4), 429–447 (2000)CrossRef
8.
go back to reference Chen, Z.Z., Deng, F., Wang, L.: Simultaneous identification of duplications, losses, and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1515–1528 (2012)CrossRef Chen, Z.Z., Deng, F., Wang, L.: Simultaneous identification of duplications, losses, and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1515–1528 (2012)CrossRef
10.
go back to reference David, L.A., Alm, E.J.: Rapid evolutionary innovation during an archaean genetic expansion. Nature 469(7328), 93–96 (2011)CrossRef David, L.A., Alm, E.J.: Rapid evolutionary innovation during an archaean genetic expansion. Nature 469(7328), 93–96 (2011)CrossRef
11.
go back to reference Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24(6), 332–340 (2009)CrossRef Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24(6), 332–340 (2009)CrossRef
12.
go back to reference Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6(5), 361–375 (2005)CrossRef Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6(5), 361–375 (2005)CrossRef
13.
go back to reference Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16181-0_9CrossRef Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010). https://​doi.​org/​10.​1007/​978-3-642-16181-0_​9CrossRef
14.
go back to reference Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28(2), 132–163 (1979)CrossRef Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28(2), 132–163 (1979)CrossRef
15.
go back to reference Górecki, P., Tiuryn, J.: Dls-trees: a model of evolutionary scenarios. Theor. Comput. Sci. 359(1–3), 378–399 (2006)MathSciNetCrossRef Górecki, P., Tiuryn, J.: Dls-trees: a model of evolutionary scenarios. Theor. Comput. Sci. 359(1–3), 378–399 (2006)MathSciNetCrossRef
16.
go back to reference Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39(1), 309–338 (2005)CrossRef Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39(1), 309–338 (2005)CrossRef
17.
go back to reference Kordi, M., Bansal, M.S.: Exact algorithms for duplication-transfer-loss reconciliation with non-binary gene trees. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2018) Kordi, M., Bansal, M.S.: Exact algorithms for duplication-transfer-loss reconciliation with non-binary gene trees. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2018)
19.
go back to reference Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)CrossRef Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)CrossRef
20.
go back to reference Ochman, H.: Lateral and oblique gene transfer. Curr. Opin. Genet. Dev. 11(6), 616–619 (2001)CrossRef Ochman, H.: Lateral and oblique gene transfer. Curr. Opin. Genet. Dev. 11(6), 616–619 (2001)CrossRef
22.
go back to reference Page, R.D.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994) Page, R.D.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994)
23.
go back to reference Rannala, B., Yang, Z.: Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164(4), 1645–1656 (2003) Rannala, B., Yang, Z.: Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164(4), 1645–1656 (2003)
24.
go back to reference Rasmussen, M.D., Kellis, M.: A Bayesian approach for fast and accurate gene tree reconstruction. Mol. Biol. Evol. 28(1), 273–290 (2011)CrossRef Rasmussen, M.D., Kellis, M.: A Bayesian approach for fast and accurate gene tree reconstruction. Mol. Biol. Evol. 28(1), 273–290 (2011)CrossRef
25.
go back to reference Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome. Res. 22, 755–765 (2012)CrossRef Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome. Res. 22, 755–765 (2012)CrossRef
26.
go back to reference Rogers, J., Fishberg, A., Youngs, N., Wu, Y.C.: Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species. BMC Bioinform. 18, 292 (2017)CrossRef Rogers, J., Fishberg, A., Youngs, N., Wu, Y.C.: Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species. BMC Bioinform. 18, 292 (2017)CrossRef
27.
go back to reference Slowinski, J.B.: Molecular polytomies. Mol. Phylogenet. Evol. 19(1), 114–120 (2001)CrossRef Slowinski, J.B.: Molecular polytomies. Mol. Phylogenet. Evol. 19(1), 114–120 (2001)CrossRef
28.
go back to reference Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)CrossRef Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)CrossRef
29.
go back to reference Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 517–535 (2011)CrossRef Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 517–535 (2011)CrossRef
30.
go back to reference Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: Ensemblcompara genetrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome. Res. 19(2), 327–335 (2009)CrossRef Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: Ensemblcompara genetrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome. Res. 19(2), 327–335 (2009)CrossRef
31.
go back to reference Wu, T., Zhang, L.: Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree. BMC Bioinform. 12(Suppl 9), S7 (2011)CrossRef Wu, T., Zhang, L.: Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree. BMC Bioinform. 12(Suppl 9), S7 (2011)CrossRef
32.
go back to reference Wu, Y.C., Rasmussen, M.D., Bansal, M.S., Kellis, M.: Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees. Genome Res. 24(3), 475–486 (2014)CrossRef Wu, Y.C., Rasmussen, M.D., Bansal, M.S., Kellis, M.: Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees. Genome Res. 24(3), 475–486 (2014)CrossRef
33.
go back to reference Zhang, L.: From gene trees to species trees ii: species tree inference by minimizing deep coalescence events. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6), 1685–1691 (2011)CrossRef Zhang, L.: From gene trees to species trees ii: species tree inference by minimizing deep coalescence events. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6), 1685–1691 (2011)CrossRef
35.
go back to reference Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciation events on a gene tree. Bioinformatics 17(9), 821–828 (2001)CrossRef Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciation events on a gene tree. Bioinformatics 17(9), 821–828 (2001)CrossRef
Metadata
Title
Reconciliation Feasibility of Non-binary Gene Trees Under a Duplication-Loss-Coalescence Model
Authors
Ricson Cheng
Matthew Dohlen
Chen Pekker
Gabriel Quiroz
Jincheng Wang
Ran Libeskind-Hadas
Yi-Chieh Wu
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-91938-6_2

Premium Partner