Skip to main content
Top

2017 | OriginalPaper | Chapter

Recovery of Metals from Solar Cells by Bioleaching

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solar energy is commonly seen as a clean energy source, an alternative to the fossil fuels, as there is no emission of any matter into the environment during operation, endurable operation period, minimum maintenance, robust technique and aesthetic aspects. If one considers the growing use of solar cells, the problem of recycling spent solar cells, the quantities of which will increase rapidly in the coming years, is yet to be solved. Establishing a technology for recycling and reusing the same is thus a necessity. Solar cells contain precious metals including silver, tellurium, and indium along with other heavy metals such as copper, aluminum, lead, arsenic, cadmium, selenium which are hazardous. Limited recycling will result in disposal of these recoverable metals in the waste. There remains the dearth of studies on recycling of old solar cells using microorganisms. In the current study, the recovery of metals from solar cells was investigated using Thiobacillus ferrooxidans micro-organism, and its culture supernatant was found to be effective for bioleaching of metals from solar cell powder. B, Mg, Si, Ni and Zn were removed with 100% efficiency within a reasonable time. T. ferrooxidans recovered 100% Cr, Mn, and Cu at 60 °C, however, only 41.6 and 13.4% of Al and Te were extracted respectively. These results suggest the higher temperature optimum for metal recovery from solar cells in use of the organism. The possible success in this endeavor will allow reuse of waste solar cells without affecting the environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Amiri F, Yaghmaei S, Mousavi SM (2011) Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresour Technol 102:1567–1573CrossRef Amiri F, Yaghmaei S, Mousavi SM (2011) Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresour Technol 102:1567–1573CrossRef
3.
go back to reference Gholami R, Borghei S, Mousavi S (2011) Bacterial leaching of a spent MoeCoeNi refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 106:26–31CrossRef Gholami R, Borghei S, Mousavi S (2011) Bacterial leaching of a spent MoeCoeNi refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 106:26–31CrossRef
4.
go back to reference Hocheng H, Chang J, Jadhav U (2012) Micromachining of various metals by using Acidithiobacillus ferrooxidans 13820 culture supernatant experiments. J Cleaner Prod 20:180–185CrossRef Hocheng H, Chang J, Jadhav U (2012) Micromachining of various metals by using Acidithiobacillus ferrooxidans 13820 culture supernatant experiments. J Cleaner Prod 20:180–185CrossRef
5.
go back to reference Hocheng H, Hong T, Jadhav U (2014) Microbial leaching of waste solder for recovery of metal. Appl Biochem Biotechnol 173:193–204CrossRef Hocheng H, Hong T, Jadhav U (2014) Microbial leaching of waste solder for recovery of metal. Appl Biochem Biotechnol 173:193–204CrossRef
6.
go back to reference Hocheng H, Su C, Jadhav UU (2014) Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere 117:652–657CrossRef Hocheng H, Su C, Jadhav UU (2014) Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere 117:652–657CrossRef
7.
go back to reference Jadhav U, Hocheng H (2013) Extraction of silver from spent silver oxide zinc button cells by using Acidithiobacillus ferrooxidans culture supernatant. J Cleaner Prod 44:39–44CrossRef Jadhav U, Hocheng H (2013) Extraction of silver from spent silver oxide zinc button cells by using Acidithiobacillus ferrooxidans culture supernatant. J Cleaner Prod 44:39–44CrossRef
8.
go back to reference Jadhav U, Hocheng H (2014) Use of Aspergillus niger 34770 culture supernatant for tin metal removal. Corros Sci 85:248–255CrossRef Jadhav U, Hocheng H (2014) Use of Aspergillus niger 34770 culture supernatant for tin metal removal. Corros Sci 85:248–255CrossRef
9.
go back to reference Jadhav U, Hocheng H, Weng W (2013) Innovative use of biologically produced ferric sulfate for machining of copper metal and study of specific metal removal rate and surface roughness during the process. J Mater Process Technol 213:1509–1515CrossRef Jadhav U, Hocheng H, Weng W (2013) Innovative use of biologically produced ferric sulfate for machining of copper metal and study of specific metal removal rate and surface roughness during the process. J Mater Process Technol 213:1509–1515CrossRef
10.
go back to reference Kang S, Yoo S, Lee J, Boo B, RyuH (2012) Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew Energy 47:152–159 Kang S, Yoo S, Lee J, Boo B, RyuH (2012) Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew Energy 47:152–159
11.
go back to reference Kim S, Bae J, Park H, Cha D (2005) Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans. Environ Geochem Health 27:229–235CrossRef Kim S, Bae J, Park H, Cha D (2005) Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans. Environ Geochem Health 27:229–235CrossRef
12.
go back to reference Klugmann-Radziemska E, Ostrowski P (2010) Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew Energy 35:1751–1759 Klugmann-Radziemska E, Ostrowski P (2010) Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew Energy 35:1751–1759
15.
go back to reference Wu HY, Ting YP (2006) Metal extraction from MSW incinerator fly ash Chemical leaching and fungal bioleaching. Enzym Microb Technol 38:839–847CrossRef Wu HY, Ting YP (2006) Metal extraction from MSW incinerator fly ash Chemical leaching and fungal bioleaching. Enzym Microb Technol 38:839–847CrossRef
16.
go back to reference Yi YK, Kim HS, Tran T, Hong SK, Kim MJ (2014) Recovering valuable metals from recycled photovoltaic modules. J Air Waste Manage Assoc 64:797–807CrossRef Yi YK, Kim HS, Tran T, Hong SK, Kim MJ (2014) Recovering valuable metals from recycled photovoltaic modules. J Air Waste Manage Assoc 64:797–807CrossRef
Metadata
Title
Recovery of Metals from Solar Cells by Bioleaching
Authors
Mital Chakankar
Cheer Su
Hong Hocheng
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-56430-2_20

Premium Partners