Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2015

01-07-2015

Relation between ferromagnetic layer thickness (NiCu) and properties of NiCu/Cu multilayers

Authors: Hilal Kuru, Hakan Kockar, Mursel Alper, Murside Haciismailoglu

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

NiCu/Cu multilayers were grown on (110) textured polycrystalline Cu substrates from a single electrolyte containing Ni and Cu ions by electrodeposition. The structural, magnetic and magnetoresistance properties of the NiCu/Cu multilayers were investigated as a function of the ferromagnetic layer thickness. The ferromagnetic NiCu layer thickness of the multilayers was varied from 2 to 10 nm while the nonmagnetic Cu layer thickness was fixed at 1 nm. Energy dispersive X-ray analysis revealed that the Ni content of the films increased and Cu content decreased as the NiCu layer thickness increased. Multilayers have the face centred cubic structure with (220) preferred orientation as their substrates. Also, the highest peak intensity changed from (220) to (111) with increasing NiCu layer thickness. The saturation magnetization, Ms and the coercivity, Hc of the samples was significantly affected by the film compositions that were varied by the ferromagnetic layer thicknesses. The Ms was increased from 36 to 239 emu/cm3 and the Hc increased from 6 to 94 Oe with increasing ferromagnetic layer thickness. The multilayers exhibited either giant magnetoresistance (GMR) or the anisotropic magnetoresistance (AMR) depending on the NiCu layer thickness. The maximum GMR magnitude of 1.5 % was obtained for the films with 4 nm NiCu layer thickness. The MR measurements indicated that the films with the NiCu layer thickness up to ≤4 nm exhibited the GMR effect whereas for the films with 5 nm NiCu thickness the AMR effect appeared, and then the amount of GMR conversion to AMR effect increased as the NiCu layer thickness in the films increased from 5 to 10 nm. Thus, the variation in microstructure of the multilayers and corresponding magnetisation and magnetoresistance changes may arises from the NiCu layer thickness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Safak, M. Alper, H. Kockar, J. Nanosci. Nanotechnol. 8(2), 854–860 (2008)CrossRef M. Safak, M. Alper, H. Kockar, J. Nanosci. Nanotechnol. 8(2), 854–860 (2008)CrossRef
3.
4.
go back to reference M. Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes, W. Schwarzacher, Appl. Phys. Lett. 63, 2144–2146 (1993)CrossRef M. Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes, W. Schwarzacher, Appl. Phys. Lett. 63, 2144–2146 (1993)CrossRef
5.
6.
go back to reference J. Zhang, M. van Moldo, D.P. Young, E.J. Podlaha, J. Electrochem. Soc. 152, 626–630 (2005)CrossRef J. Zhang, M. van Moldo, D.P. Young, E.J. Podlaha, J. Electrochem. Soc. 152, 626–630 (2005)CrossRef
7.
10.
11.
go back to reference I. Bakonyi, J. Toth, L. Goualou, T. Becsei, E. Toth-Kadar, W. Schwarzacher, G. Nabiyouni, J. Electrochem. Soc. 149, 195–200 (2002)CrossRef I. Bakonyi, J. Toth, L. Goualou, T. Becsei, E. Toth-Kadar, W. Schwarzacher, G. Nabiyouni, J. Electrochem. Soc. 149, 195–200 (2002)CrossRef
12.
go back to reference M. Alper, H. Kockar, M. Safak, M.C. Baykul, J. Alloys. Compd. 453, 15–19 (2008)CrossRef M. Alper, H. Kockar, M. Safak, M.C. Baykul, J. Alloys. Compd. 453, 15–19 (2008)CrossRef
13.
go back to reference E. Toth-Kadar, L. Peter, T. Becsei, J. Toth, L. Pogany, T. Tornoczi, P. Kamasa, I. Bakonyi, G. Lang, A. Cziraki, W. Schwarzacher, J. Electrochem. Soc. 147, 3311–3318 (2000)CrossRef E. Toth-Kadar, L. Peter, T. Becsei, J. Toth, L. Pogany, T. Tornoczi, P. Kamasa, I. Bakonyi, G. Lang, A. Cziraki, W. Schwarzacher, J. Electrochem. Soc. 147, 3311–3318 (2000)CrossRef
14.
go back to reference M. Alper, M.C. Baykul, L. Peter, J. Toth, I. Bakonyi, J. Appl. Electrochem. 34(8), 841–848 (2004)CrossRef M. Alper, M.C. Baykul, L. Peter, J. Toth, I. Bakonyi, J. Appl. Electrochem. 34(8), 841–848 (2004)CrossRef
15.
go back to reference M. Safak Haciismailoglu, M. Alper, H. Kockar, J. Electrochem. Soc. 157(10), 538–545 (2010)CrossRef M. Safak Haciismailoglu, M. Alper, H. Kockar, J. Electrochem. Soc. 157(10), 538–545 (2010)CrossRef
16.
go back to reference S. Kalsen, M. Alper, H. Kockar, M. Haciismailoglu, O. Karaagac, H. Kuru, J. Supercond. Nov. Magn. 26, 813–817 (2013)CrossRef S. Kalsen, M. Alper, H. Kockar, M. Haciismailoglu, O. Karaagac, H. Kuru, J. Supercond. Nov. Magn. 26, 813–817 (2013)CrossRef
17.
go back to reference H. Kuru, H. Kockar, M. Alper, J. Supercond. Nov. Magn. 26, 779–784 (2013)CrossRef H. Kuru, H. Kockar, M. Alper, J. Supercond. Nov. Magn. 26, 779–784 (2013)CrossRef
19.
go back to reference M.N. Baibich, J.M. Broto, A. Fert, F.N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61(21), 2472–2475 (1988)CrossRef M.N. Baibich, J.M. Broto, A. Fert, F.N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61(21), 2472–2475 (1988)CrossRef
20.
go back to reference F.J. Himpsel, T.A. Jung, P.F. Seidler, IBM J. Res. Dev. 42(1), 33–42 (1998)CrossRef F.J. Himpsel, T.A. Jung, P.F. Seidler, IBM J. Res. Dev. 42(1), 33–42 (1998)CrossRef
21.
go back to reference M. Schlesinger, M. Paunovic, Modern Electroplating, 4th edn. (Wiley Interscience Publication, John Wiley & Sons Inc., NY, 2000) M. Schlesinger, M. Paunovic, Modern Electroplating, 4th edn. (Wiley Interscience Publication, John Wiley & Sons Inc., NY, 2000)
22.
23.
go back to reference P. Bradley, S. Roy, D. Landolt, J. Chem. Soc. Faraday Trans. 92, 4015–4019 (1996)CrossRef P. Bradley, S. Roy, D. Landolt, J. Chem. Soc. Faraday Trans. 92, 4015–4019 (1996)CrossRef
24.
25.
26.
27.
go back to reference B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Reading, 1978) B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Reading, 1978)
28.
go back to reference D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall, London, 1996) D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall, London, 1996)
29.
go back to reference M. Prutton, Thin Ferromagnetic Films (Butterwords, London, 1964) M. Prutton, Thin Ferromagnetic Films (Butterwords, London, 1964)
30.
go back to reference J. Toth, L.F. Kiss, E. Toth-Kadar, A. Dinia, V. Pierron-Bohnes, I. Bakonyi, J. Magn. Magn. Mater. 198–199, 243–245 (1999)CrossRef J. Toth, L.F. Kiss, E. Toth-Kadar, A. Dinia, V. Pierron-Bohnes, I. Bakonyi, J. Magn. Magn. Mater. 198–199, 243–245 (1999)CrossRef
31.
go back to reference R.M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951), p. 745 R.M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951), p. 745
Metadata
Title
Relation between ferromagnetic layer thickness (NiCu) and properties of NiCu/Cu multilayers
Authors
Hilal Kuru
Hakan Kockar
Mursel Alper
Murside Haciismailoglu
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3015-2

Other articles of this Issue 7/2015

Journal of Materials Science: Materials in Electronics 7/2015 Go to the issue