Skip to main content
Top

2016 | OriginalPaper | Chapter

4. Reliability of the Rigid-Band Model in Lithium Intercalation Compounds

Authors : Christian Julien, Alain Mauger, Ashok Vijh, Karim Zaghib

Published in: Lithium Batteries

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Numerous layered structured compounds are interesting materials in which lithium intercalation occurs primarily without destruction of the host lattice. In many cases a rigid band model is a useful first approximation for describing the changes in electronic properties of the host material with intercalation. We observed, nevertheless, that the rigid-band model is not applicable to all of the layered compounds. One may argue that the applicability of the rigid-band model may be taken as a test for the properties most desirable in a good intercalation material. This needs yet to be more extensively documented for their promising applications as insertion electrode in rechargeable lithium batteries. This chapter presents the applicability of the rigid-band model on intercalation compounds with a layered structure namely the transition-metal chalcogenides MX 2 (X = S, Se) and the transition-metal oxides LiMO2 (M = Co, Ni) as well.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liang WY (1989) Electronic properties of intercalation compounds. Mater Sci Eng B 3:139–143CrossRef Liang WY (1989) Electronic properties of intercalation compounds. Mater Sci Eng B 3:139–143CrossRef
2.
go back to reference Wilson JA (1977) Concerning the semimetallic characters of TiS2 and TiSe2. Solid State Commun 22:551–553CrossRef Wilson JA (1977) Concerning the semimetallic characters of TiS2 and TiSe2. Solid State Commun 22:551–553CrossRef
3.
go back to reference Laubach S, Schmidt PC, Ensling D, Schmid S, Jaegermann W, Thisen A, Nikolowskid K, Ehrenberg H (2009) Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys Chem Chem Phys 11:3278–3289CrossRef Laubach S, Schmidt PC, Ensling D, Schmid S, Jaegermann W, Thisen A, Nikolowskid K, Ehrenberg H (2009) Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys Chem Chem Phys 11:3278–3289CrossRef
4.
go back to reference Sellmyer DJ (1978) Electronic structure of metallic compounds and alloys. Solid State Phys 33:83–248 Sellmyer DJ (1978) Electronic structure of metallic compounds and alloys. Solid State Phys 33:83–248
5.
go back to reference Jones H (1934) The theory of alloys in the γ-phase. Proc R Soc London Ser A 144:225–234CrossRef Jones H (1934) The theory of alloys in the γ-phase. Proc R Soc London Ser A 144:225–234CrossRef
6.
go back to reference Friedel J (1954) Electronic structure of primary solid solutions in metals. Adv Phys 3:446–507CrossRef Friedel J (1954) Electronic structure of primary solid solutions in metals. Adv Phys 3:446–507CrossRef
7.
go back to reference Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
8.
go back to reference Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193–335CrossRef Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193–335CrossRef
9.
go back to reference Huisman R, de Jong R, Haas C (1971) Trigonal-prismatic coordination in solid compounds of transition metals. J Solid State Chem 3:56–66CrossRef Huisman R, de Jong R, Haas C (1971) Trigonal-prismatic coordination in solid compounds of transition metals. J Solid State Chem 3:56–66CrossRef
10.
go back to reference Williams PM (1976) Photoemission studies of materials with layered structures. In: Lee PA (ed) Physics and chemistry of materials with layered structure, vol 4. Reidel, Dordrecht, pp 273–341 Williams PM (1976) Photoemission studies of materials with layered structures. In: Lee PA (ed) Physics and chemistry of materials with layered structure, vol 4. Reidel, Dordrecht, pp 273–341
11.
go back to reference Brown BE, Beerntsen DJ (1965) Layer structure polytypism among niobium and tantalum selenides. Acta Crystallogr 18:31–36CrossRef Brown BE, Beerntsen DJ (1965) Layer structure polytypism among niobium and tantalum selenides. Acta Crystallogr 18:31–36CrossRef
12.
go back to reference Hibma TJ (1982) Structural aspects of monovalent cation intercalates of layered dichacogenides. In: Whittingham MS, Jacobson AJ (eds) Intercalation chemistry. Academic, New York, pp 285–313 Hibma TJ (1982) Structural aspects of monovalent cation intercalates of layered dichacogenides. In: Whittingham MS, Jacobson AJ (eds) Intercalation chemistry. Academic, New York, pp 285–313
13.
go back to reference Julien C, Balkanski M (1993) Is the rigid band model applicable in lithium intercalation compounds? Mater Res Soc Symp Proc 293:27–37CrossRef Julien C, Balkanski M (1993) Is the rigid band model applicable in lithium intercalation compounds? Mater Res Soc Symp Proc 293:27–37CrossRef
14.
go back to reference Julien C, Samaras I, Gorochov O, Ghorayeb AM (1992) Optical and electrical-transport studies on lithium-intercalated TiS2. Phys Rev B 45:13390–13395CrossRef Julien C, Samaras I, Gorochov O, Ghorayeb AM (1992) Optical and electrical-transport studies on lithium-intercalated TiS2. Phys Rev B 45:13390–13395CrossRef
15.
go back to reference Klipstein PC, Pereira CM, Friend RH (1984) Transport and Raman investigation of the group IV layered compounds and their lithium intercalates. In: Acrivos JV, Mott NF, Yoffe AD (eds) Physics and chemistry of electrons and ions in condensed matter, NATO-ASI Series, Ser. C 130. Reidel, Dordrecht, pp 549–559CrossRef Klipstein PC, Pereira CM, Friend RH (1984) Transport and Raman investigation of the group IV layered compounds and their lithium intercalates. In: Acrivos JV, Mott NF, Yoffe AD (eds) Physics and chemistry of electrons and ions in condensed matter, NATO-ASI Series, Ser. C 130. Reidel, Dordrecht, pp 549–559CrossRef
16.
go back to reference Klipstein PC, Friend RH (1987) Transport properties of LixTiS2 (0 < x < 1): a metal with a tunable Fermi level. J Phys C 20:4169–4180CrossRef Klipstein PC, Friend RH (1987) Transport properties of LixTiS2 (0 < x < 1): a metal with a tunable Fermi level. J Phys C 20:4169–4180CrossRef
17.
go back to reference Ghorayeb AM, Friend RH (1987) Transport and optical properties of the hydrazine intercalation complexes of TiS2, TiSe2 and ZrS2. J Phys C 20:4181–4200CrossRef Ghorayeb AM, Friend RH (1987) Transport and optical properties of the hydrazine intercalation complexes of TiS2, TiSe2 and ZrS2. J Phys C 20:4181–4200CrossRef
18.
go back to reference Beal AR, Nulsen S (1981) Transmission spectra of lithium intercalation complexes of some layered transition-metal dichalcogenides. Phil Mag B 43:965–983CrossRef Beal AR, Nulsen S (1981) Transmission spectra of lithium intercalation complexes of some layered transition-metal dichalcogenides. Phil Mag B 43:965–983CrossRef
19.
go back to reference Isomaki H, von Boehm J, Krusius P (1979) Band structure of group IVA transition-metal dichacogenides. J Phys C 12:3239–3252CrossRef Isomaki H, von Boehm J, Krusius P (1979) Band structure of group IVA transition-metal dichacogenides. J Phys C 12:3239–3252CrossRef
20.
go back to reference Julien C, Ruvalds J, Virosztek A, Gorochov O (1991) Fermi liquid reflectivity of TiS2. Solid State Commun 79:875–878CrossRef Julien C, Ruvalds J, Virosztek A, Gorochov O (1991) Fermi liquid reflectivity of TiS2. Solid State Commun 79:875–878CrossRef
21.
go back to reference Virosztek A, Ruvalds J (1990) Nested-Fermi-liquid theory. Phys Rev B 42:4064–4072CrossRef Virosztek A, Ruvalds J (1990) Nested-Fermi-liquid theory. Phys Rev B 42:4064–4072CrossRef
22.
go back to reference Scholz GA, Frindt RF (1983) Transmission spectra of silver intercalated 2H-TaS2 and 1T-TiS2. Can J Phys 61:965–970CrossRef Scholz GA, Frindt RF (1983) Transmission spectra of silver intercalated 2H-TaS2 and 1T-TiS2. Can J Phys 61:965–970CrossRef
23.
go back to reference Broadhead J, Butherus AD (1972) Rechargeable nonaqueous battery. US Patent 3,791,867, Accessed 12 Feb 1974 Broadhead J, Butherus AD (1972) Rechargeable nonaqueous battery. US Patent 3,791,867, Accessed 12 Feb 1974
24.
go back to reference Ghorayeb AM, Liang WY, Yoffe AD (1986) Band structure changes upon lithium intercalation. In: Dresselhaus MS (ed) Intercalation in layered compounds, NATO-ASI Series, Ser B 148. Plenum, New York, pp 135–138 Ghorayeb AM, Liang WY, Yoffe AD (1986) Band structure changes upon lithium intercalation. In: Dresselhaus MS (ed) Intercalation in layered compounds, NATO-ASI Series, Ser B 148. Plenum, New York, pp 135–138
25.
go back to reference Liang WY (1986) Electronic properties of transition metal dichalcogenides and their intercalation complexes. In: Dresselhaus MS (ed) Intercalation in layered compounds, NATO-ASI Series, Ser. B 148. Plenum, New York, pp 31–73 Liang WY (1986) Electronic properties of transition metal dichalcogenides and their intercalation complexes. In: Dresselhaus MS (ed) Intercalation in layered compounds, NATO-ASI Series, Ser. B 148. Plenum, New York, pp 31–73
26.
go back to reference Py MA, Haering RR (1983) Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can J Phys 61:76–84CrossRef Py MA, Haering RR (1983) Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can J Phys 61:76–84CrossRef
27.
go back to reference Selwyn LS, McKinnon WR, von Sacken U, Jones CA (1987) Lithium electrochemical cells at low voltage. Decomposition of Mo and W dichalcogenides. Solid State Ionics 22:337–344CrossRef Selwyn LS, McKinnon WR, von Sacken U, Jones CA (1987) Lithium electrochemical cells at low voltage. Decomposition of Mo and W dichalcogenides. Solid State Ionics 22:337–344CrossRef
28.
go back to reference Samaras I, Saikh I, Julien C, Balkanski M (1989) Lithium insertion in layered materials as battery cathodes. Mater Sci Eng B 3:209–214CrossRef Samaras I, Saikh I, Julien C, Balkanski M (1989) Lithium insertion in layered materials as battery cathodes. Mater Sci Eng B 3:209–214CrossRef
29.
go back to reference Julien CM (2002) Lithium intercalated compounds: charge transfer and related properties. Mater Sci Eng R 40:47–102CrossRef Julien CM (2002) Lithium intercalated compounds: charge transfer and related properties. Mater Sci Eng R 40:47–102CrossRef
30.
go back to reference Hearing RR, Stiles JAR, Brandt Klaus (1979) Lithium molybdenum disulphide battery cathode. US Patent 4,224,390, Accessed 23 Sep 1980 Hearing RR, Stiles JAR, Brandt Klaus (1979) Lithium molybdenum disulphide battery cathode. US Patent 4,224,390, Accessed 23 Sep 1980
31.
go back to reference Chrissafis K, Zamani M, Kambas K, Stoemenos J, Economou NA, Samaras I, Julien C (1989) Structural studies of MoS2 intercalated by lithium. Mater Sci Eng B 3:145–151CrossRef Chrissafis K, Zamani M, Kambas K, Stoemenos J, Economou NA, Samaras I, Julien C (1989) Structural studies of MoS2 intercalated by lithium. Mater Sci Eng B 3:145–151CrossRef
32.
go back to reference Sekine T, Julien C, Samaras I, Jouanne M, Balkanski M (1989) Vibrational modifications on lithium intercalation in MoS2. Mater Sci Eng B 3:153–158CrossRef Sekine T, Julien C, Samaras I, Jouanne M, Balkanski M (1989) Vibrational modifications on lithium intercalation in MoS2. Mater Sci Eng B 3:153–158CrossRef
33.
go back to reference Julien C, Sekine T, Balkanski M (1991) Lattice dynamics of lithium intercalated MoS2. Solid State Ionics 48:225–229CrossRef Julien C, Sekine T, Balkanski M (1991) Lattice dynamics of lithium intercalated MoS2. Solid State Ionics 48:225–229CrossRef
34.
go back to reference Mattheis LF (1973) Band structure of transition-metal-dichalcogenide layer compounds. Phys Rev B 8:3719–3740CrossRef Mattheis LF (1973) Band structure of transition-metal-dichalcogenide layer compounds. Phys Rev B 8:3719–3740CrossRef
35.
go back to reference Tsai HL, Heising J, Schindler JL, Kannewurf CT, Kanatzidis MG (1997) Exfoliated-restacked phase of WS2. Chem Mater 9:879–882CrossRef Tsai HL, Heising J, Schindler JL, Kannewurf CT, Kanatzidis MG (1997) Exfoliated-restacked phase of WS2. Chem Mater 9:879–882CrossRef
36.
go back to reference Rüdorff W (1966) Reaktionen stark elktropositiver metalle mit graphit und mit metalldichalcogeniden. Angew Chem 78:948CrossRef Rüdorff W (1966) Reaktionen stark elktropositiver metalle mit graphit und mit metalldichalcogeniden. Angew Chem 78:948CrossRef
37.
go back to reference Somoano RB, Hadek V, Rembaum A (1973) Alkali metal intercalates of molybdenum disulphide. J Chem Phys 58:697–701CrossRef Somoano RB, Hadek V, Rembaum A (1973) Alkali metal intercalates of molybdenum disulphide. J Chem Phys 58:697–701CrossRef
38.
go back to reference Omloo WPF, Jellinek F (1970) Intercalation compounds of alkali metals with niobium and tantalum dichalcogenides. J Less Common Metals 20:121–129CrossRef Omloo WPF, Jellinek F (1970) Intercalation compounds of alkali metals with niobium and tantalum dichalcogenides. J Less Common Metals 20:121–129CrossRef
39.
go back to reference Julien C, Yebka B (1996) Studies of lithium intercalation in 3R-WS2. Solid State Ionics 90:141–149CrossRef Julien C, Yebka B (1996) Studies of lithium intercalation in 3R-WS2. Solid State Ionics 90:141–149CrossRef
40.
go back to reference DiSalvo FJ, Bagley BG, Voorhoeve JM, Waszczak JV (1973) Preparation and properties of a new polytype of tantalum disulfide (4Hb-TaS2). J Phys Chem Solids 34:1357–1362CrossRef DiSalvo FJ, Bagley BG, Voorhoeve JM, Waszczak JV (1973) Preparation and properties of a new polytype of tantalum disulfide (4Hb-TaS2). J Phys Chem Solids 34:1357–1362CrossRef
41.
go back to reference Julien C (1990) Technological applications of solid state ionics. Mater Sci Eng B 6:9–28CrossRef Julien C (1990) Technological applications of solid state ionics. Mater Sci Eng B 6:9–28CrossRef
42.
go back to reference Julien C, Yebka B, Porte C (1998) Effects of the lithium intercalation on the optical band edge of WS2. Solid State Ionics 110:29–34CrossRef Julien C, Yebka B, Porte C (1998) Effects of the lithium intercalation on the optical band edge of WS2. Solid State Ionics 110:29–34CrossRef
43.
go back to reference Likforman A, Carre D, Etienne J, Bachet B (1975) Structure cristalline du monoséléniure d’indium InSe. Acta Crystallogr B 31:1252–1254CrossRef Likforman A, Carre D, Etienne J, Bachet B (1975) Structure cristalline du monoséléniure d’indium InSe. Acta Crystallogr B 31:1252–1254CrossRef
44.
go back to reference Ikari T, Shigetomi S, Hashimoto K (1982) Crystal structure and Raman spectra of InSe. Phys Status Sol (b) 111:477–481CrossRef Ikari T, Shigetomi S, Hashimoto K (1982) Crystal structure and Raman spectra of InSe. Phys Status Sol (b) 111:477–481CrossRef
45.
go back to reference Levy-Clement C, Rioux J, Dahn JR, McKinnon WR (1984) In-situ X-ray characterization of the reaction of lithium with InSe. Mater Res Bull 19:1629–1634CrossRef Levy-Clement C, Rioux J, Dahn JR, McKinnon WR (1984) In-situ X-ray characterization of the reaction of lithium with InSe. Mater Res Bull 19:1629–1634CrossRef
46.
go back to reference Schellenberger A, Lehman J, Pettenkofer C, Jaegermann W (1994) Electronic structure of in-situ (in UHV) prepared Li/InSe insertion compounds. Solid State Ionics 74:255–262CrossRef Schellenberger A, Lehman J, Pettenkofer C, Jaegermann W (1994) Electronic structure of in-situ (in UHV) prepared Li/InSe insertion compounds. Solid State Ionics 74:255–262CrossRef
47.
go back to reference Schellenberger A, Jaegermann W, Pettenkofer C, Tomm Y (1995) Electronic structure and electrochemical potential of electrons during alkali intercalation in layered materials. Ionics 1:115–124CrossRef Schellenberger A, Jaegermann W, Pettenkofer C, Tomm Y (1995) Electronic structure and electrochemical potential of electrons during alkali intercalation in layered materials. Ionics 1:115–124CrossRef
48.
go back to reference Julien C, Jouanne M, Burret PA, Balkanski M (1989) Effects of lithium intercalation on the optical properties of InSe. Mater Sci Eng B 3:39–44CrossRef Julien C, Jouanne M, Burret PA, Balkanski M (1989) Effects of lithium intercalation on the optical properties of InSe. Mater Sci Eng B 3:39–44CrossRef
49.
go back to reference Burret PA, Jouanne M, Julien C (1989) Theoretical calculations and Raman spectrum of intercalation modes in LixInSe. Z Phys B Condensed Matter 76:451–455CrossRef Burret PA, Jouanne M, Julien C (1989) Theoretical calculations and Raman spectrum of intercalation modes in LixInSe. Z Phys B Condensed Matter 76:451–455CrossRef
50.
go back to reference Kuroda N, Nishina Y (1978) Resonant Raman scattering at higher M0 exciton edge in layer compound InSe. Solid State Commun 28:439–443CrossRef Kuroda N, Nishina Y (1978) Resonant Raman scattering at higher M0 exciton edge in layer compound InSe. Solid State Commun 28:439–443CrossRef
51.
go back to reference Julien C, Nazri GA (2001) Intercalation compounds for advanced lithium batteries. In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials, vol 10. Academic Press, San Diego, pp 99–184CrossRef Julien C, Nazri GA (2001) Intercalation compounds for advanced lithium batteries. In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials, vol 10. Academic Press, San Diego, pp 99–184CrossRef
Metadata
Title
Reliability of the Rigid-Band Model in Lithium Intercalation Compounds
Authors
Christian Julien
Alain Mauger
Ashok Vijh
Karim Zaghib
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-19108-9_4