Skip to main content
Top

2020 | OriginalPaper | Chapter

11. Removal and Recovery of Heavy Metal Ions Using Natural Adsorbents

Authors : Amjad Mumtaz Khan, Sajad Ahmad Ganai

Published in: Modern Age Waste Water Problems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Now a day’s heavy metal pollution has become a serious environmental problem. The presence of heavy metal ions is a major problem due to their toxicity to many life forms on this planet. Therefore the removal of heavy metals from the environment is of special concern due to their persistence. During these days natural adsorbents are most frequently studied and widely applied for the metal contaminated water. Adsorption processes are being widely used by various researchers for the removal of heavy metals from the waste streams. The need for the safe and economical methods for the elimination of heavy metals from contaminated waters has developed the interest of researchers towards the production of low cost adsorbents. Therefore there is an urgent need that all possible sources of agro-based inexpensive adsorbents should be explored and their role for the removal of heavy metals should be studied in detail.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahluwalia SS, Goyal D (2005) Removal of heavy metals by waste tea leaves from aqueous solution. Eng Life Sci 5(2):158–162CrossRef Ahluwalia SS, Goyal D (2005) Removal of heavy metals by waste tea leaves from aqueous solution. Eng Life Sci 5(2):158–162CrossRef
go back to reference Ajjabi LC, Chouba L (2009) Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga charctomorpha linum. J Environ Manag 90(11):3485–3489CrossRef Ajjabi LC, Chouba L (2009) Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga charctomorpha linum. J Environ Manag 90(11):3485–3489CrossRef
go back to reference Annaduroi G, Juang RS, Lee DJ (2003) Adsorption of heavy metals from water using banana & orange peels. Water Sci Technol 47(1):185–190CrossRef Annaduroi G, Juang RS, Lee DJ (2003) Adsorption of heavy metals from water using banana & orange peels. Water Sci Technol 47(1):185–190CrossRef
go back to reference Awwad NS, El-Zahhar AA, Founda AM, Ibrahim HA (2013) Removal of heavy metal ions from ground water and surface water samples using carbons derived from date pits. J Environ Chem Eng 1(3):416–423CrossRef Awwad NS, El-Zahhar AA, Founda AM, Ibrahim HA (2013) Removal of heavy metal ions from ground water and surface water samples using carbons derived from date pits. J Environ Chem Eng 1(3):416–423CrossRef
go back to reference Batabyal D, Sahu A, Chaudhuri SK (1995) Kinetics and mechanism of removal of 2,4- dimethyl phenol from aqueous solutions with coal fly ash. Sep Technol 5(4):179–186CrossRef Batabyal D, Sahu A, Chaudhuri SK (1995) Kinetics and mechanism of removal of 2,4- dimethyl phenol from aqueous solutions with coal fly ash. Sep Technol 5(4):179–186CrossRef
go back to reference Bayat B (2002a) Combined removal of Zinc (II) and cadmium(II) from aqueous solutions by adsoption onto high-calcium Turkish fly ash. Water Air Soil Pollut 136(1–4):69–92CrossRef Bayat B (2002a) Combined removal of Zinc (II) and cadmium(II) from aqueous solutions by adsoption onto high-calcium Turkish fly ash. Water Air Soil Pollut 136(1–4):69–92CrossRef
go back to reference Bayat B (2002b) Comparative study of adsorption properties of Turkish fly ashes: I. the case of nickel (II), Copper (II) and Zinc (II). J Hazard Mater 95(3):251–273CrossRef Bayat B (2002b) Comparative study of adsorption properties of Turkish fly ashes: I. the case of nickel (II), Copper (II) and Zinc (II). J Hazard Mater 95(3):251–273CrossRef
go back to reference Bhattacharya AK, Mandal SN, Das SK (2006) Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chem Eng J 123(1–2):43–51CrossRef Bhattacharya AK, Mandal SN, Das SK (2006) Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chem Eng J 123(1–2):43–51CrossRef
go back to reference Chuoh TG, Jumosiah A, Azmi I, Katayan S, Thomas Choong SY (2005) Rice husk as a potential low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175(3):305–316CrossRef Chuoh TG, Jumosiah A, Azmi I, Katayan S, Thomas Choong SY (2005) Rice husk as a potential low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175(3):305–316CrossRef
go back to reference Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418CrossRef Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418CrossRef
go back to reference Gangoli N, Markey D, Thodas G (1975) Removal of heavy metal ions, from aqueous solutions with fly ash. In: Proceedings of the national conference on complete water use, Chicago, IL, USA, pp 270–275 Gangoli N, Markey D, Thodas G (1975) Removal of heavy metal ions, from aqueous solutions with fly ash. In: Proceedings of the national conference on complete water use, Chicago, IL, USA, pp 270–275
go back to reference Gupta VK, Ali I (2000) Utilization of bagasses fly ash (a sugar industry waste) for the removal of copper and zinc from waste water. Sep Purif Technol 18(2):131–140CrossRef Gupta VK, Ali I (2000) Utilization of bagasses fly ash (a sugar industry waste) for the removal of copper and zinc from waste water. Sep Purif Technol 18(2):131–140CrossRef
go back to reference Gupta VK, Sharma S (2003) Removal of Zinc from aqueous solutions using message fly ash a low cost adsorbent. Ind Eng Chem Res 42(25):6619–6624CrossRef Gupta VK, Sharma S (2003) Removal of Zinc from aqueous solutions using message fly ash a low cost adsorbent. Ind Eng Chem Res 42(25):6619–6624CrossRef
go back to reference Johnson PD, Watson MA, Brown J, Jefcoat IA (2002) Peanut hull pellets as a single use sorbent for the capture of cu (II) form wastewaer. Waste Manag 22(5):471–780CrossRef Johnson PD, Watson MA, Brown J, Jefcoat IA (2002) Peanut hull pellets as a single use sorbent for the capture of cu (II) form wastewaer. Waste Manag 22(5):471–780CrossRef
go back to reference Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97(1):104–109CrossRef Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97(1):104–109CrossRef
go back to reference Mata YN, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Sugar-beet pulp pectin gels as biosorbent for heavy metals: preparation and determination of biosorption and desorption characteristics. Chem Eng J 150(2–3):289–301CrossRef Mata YN, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Sugar-beet pulp pectin gels as biosorbent for heavy metals: preparation and determination of biosorption and desorption characteristics. Chem Eng J 150(2–3):289–301CrossRef
go back to reference Montanher SF, Oliveira EA, Rollemberg MC (2005) Removal of heavy metal ions from aqueous solutions by sorption onto rice bran. J Hazard Mater 117(2–3):207–211CrossRef Montanher SF, Oliveira EA, Rollemberg MC (2005) Removal of heavy metal ions from aqueous solutions by sorption onto rice bran. J Hazard Mater 117(2–3):207–211CrossRef
go back to reference Nasernejad B, Zadeh TE, Pour BB, Bygi ME, Zamani A (2005) Comparison for biosorption modeling of heavy metals from waste water by carrot residues. Process Biochem 40(3–4):1319–1322CrossRef Nasernejad B, Zadeh TE, Pour BB, Bygi ME, Zamani A (2005) Comparison for biosorption modeling of heavy metals from waste water by carrot residues. Process Biochem 40(3–4):1319–1322CrossRef
go back to reference Park HJ, Jeong SW, Yang JK, Kim BG, Lee SM (2007) Removal of heavy metals using waste egg shells. J Environ Sci 19(12):1436–1441CrossRef Park HJ, Jeong SW, Yang JK, Kim BG, Lee SM (2007) Removal of heavy metals using waste egg shells. J Environ Sci 19(12):1436–1441CrossRef
go back to reference Saeed A, Akhtar MW, Iqbal M (2005a) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol 45(1):25–31CrossRef Saeed A, Akhtar MW, Iqbal M (2005a) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol 45(1):25–31CrossRef
go back to reference Saeed A, Iqbal M, Akhtar MW (2005b) Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater 117(1):65–736CrossRef Saeed A, Iqbal M, Akhtar MW (2005b) Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater 117(1):65–736CrossRef
go back to reference Schiewer S, Patil SB (2008) Modeling the effect of PH on biosorption of heavy metals by citrus peals. J Hazard Mater 157(1):8–17CrossRef Schiewer S, Patil SB (2008) Modeling the effect of PH on biosorption of heavy metals by citrus peals. J Hazard Mater 157(1):8–17CrossRef
go back to reference Sciban M, Klasnja M, Skrbic B (2006) Modified hardwood sawdust as adsorbent of heavy metal ions from water. Wood Sci Technol 40(3):217–227CrossRef Sciban M, Klasnja M, Skrbic B (2006) Modified hardwood sawdust as adsorbent of heavy metal ions from water. Wood Sci Technol 40(3):217–227CrossRef
Metadata
Title
Removal and Recovery of Heavy Metal Ions Using Natural Adsorbents
Authors
Amjad Mumtaz Khan
Sajad Ahmad Ganai
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-08283-3_11