Skip to main content
Top
Published in: The Journal of Supercomputing 4/2023

28-09-2022

Representation of gene regulation networks by hypothesis logic-based Boolean systems

Authors: Pierre Siegel, Andrei Doncescu, Vincent Risch, Sylvain Sené

Published in: The Journal of Supercomputing | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Boolean Dynamical Systems (BDSs) are networks described by Boolean variables. A new representation of BDSs is presented in this article by using modal non-monotonic logic (\({\mathcal {H}}\)). This approach allows Boolean Networks to be represented by a set of modal formulas and therefore can be used to describe and learn their properties. The study of a BDS focuses in particular on the search of stable configurations, limit cycles and unstable cycles, which help to characterize a large type of Gene Networks. In this article is presented the identification of such asymptotic properties by introduction of a new concept, ghost extensions. Using ghost extensions, it is possible to translate BDSs in propositional calculus and consequently to use SAT algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
The full definition of \(\mathcal {H}\) further states that any formula of first-order logic is in \(\mathscr {L}(\mathcal {H}{})\), and that, whenever f and g are in \(\mathscr {L}(\mathcal {H}{})\), \(\lnot f\), \((f \wedge g)\), \((f \vee g)\), \((f \rightarrow g)\), are in \(\mathscr {L}(\mathcal {H}{})\) too.
 
2
Uncountable because we can apply the Cantor’s diagonal argument on the set of deterministic updating modes which are basically defined as infinite sequences of subsets of nodes of the network.
 
3
Function k may appear naive, because \(x_1 \wedge \lnot x_1 \wedge x_2 = \bot\) (\(\top\) is the logic formula True and \(\bot\) is False), which gives an equivalent translation \(TR (h) = \{\mathrm {H}2 \rightarrow \text{L} \lnot 1, \mathrm {H}\lnot 2 \rightarrow \text{L} 1, \mathrm {H}\bot \rightarrow \text{L} 2, \mathrm {H}\top \rightarrow \text{L} \lnot 2\}\). However, one of the aims of this study is also to show that we can deal with functions of any kind, without the need of a pre-processing. The formalism of \(\mathcal {H}\) implicitly makes the expected simplifications.
 
Literature
1.
go back to reference Akman OE, Watterson S, Parton A, Binns N, Millar AJ, Ghazal P (2012) Digital clocks: simple Boolean models can quantitatively describe circadian systems. J R Soc Interface 9:2365–2382CrossRef Akman OE, Watterson S, Parton A, Binns N, Millar AJ, Ghazal P (2012) Digital clocks: simple Boolean models can quantitatively describe circadian systems. J R Soc Interface 9:2365–2382CrossRef
2.
go back to reference Akutsu T (2018) Algorithms For analysis, inference, and control of boolean networks, 9789813233447, World Scientific Publishing Company Akutsu T (2018) Algorithms For analysis, inference, and control of boolean networks, 9789813233447, World Scientific Publishing Company
3.
go back to reference Aracena J, González M, Zuñiga A, Mendez MA, Cambiazo V (2006) Regulatory network for cell shape changes during Drosophila ventral furrow formation. J Theor Biol 239:49–62CrossRefMATH Aracena J, González M, Zuñiga A, Mendez MA, Cambiazo V (2006) Regulatory network for cell shape changes during Drosophila ventral furrow formation. J Theor Biol 239:49–62CrossRefMATH
5.
go back to reference Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3:e1672CrossRef Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3:e1672CrossRef
6.
go back to reference Dealy S, Kauffman S, Socolar J (2005) Modeling pathways of differentiation in genetic regulatory networks with Boolean networks. Complexity 11:52–60CrossRef Dealy S, Kauffman S, Socolar J (2005) Modeling pathways of differentiation in genetic regulatory networks with Boolean networks. Complexity 11:52–60CrossRef
7.
go back to reference Delgrande JP, Schaub T (2005) Expressing default logic variants in default logic. J Log Comput 15:593–621CrossRefMATH Delgrande JP, Schaub T (2005) Expressing default logic variants in default logic. J Log Comput 15:593–621CrossRefMATH
8.
go back to reference Demongeot J, Elena A, Noual M, Sené S, Thuderoz F (2011) “Immunetworks’’, intersecting circuits and dynamics. J Theor Biol 280:19–33CrossRefMATH Demongeot J, Elena A, Noual M, Sené S, Thuderoz F (2011) “Immunetworks’’, intersecting circuits and dynamics. J Theor Biol 280:19–33CrossRefMATH
9.
go back to reference Demongeot J, Goles E, Morvan M, Noual M, Sené S (2010) Attraction basins as gauges of the robustness against boundary conditions in biological complex systems. PLoS ONE 5:e11793CrossRef Demongeot J, Goles E, Morvan M, Noual M, Sené S (2010) Attraction basins as gauges of the robustness against boundary conditions in biological complex systems. PLoS ONE 5:e11793CrossRef
10.
go back to reference Demongeot J, Noual M, Sené S (2012) Combinatorics of Boolean automata circuits dynamics. Discret Appl Math 160:398–415CrossRefMATH Demongeot J, Noual M, Sené S (2012) Combinatorics of Boolean automata circuits dynamics. Discret Appl Math 160:398–415CrossRefMATH
11.
go back to reference Demongeot J, Sené S (2020) About block-parallel Boolean networks: a position paper. Nat Comput 19:5–13CrossRef Demongeot J, Sené S (2020) About block-parallel Boolean networks: a position paper. Nat Comput 19:5–13CrossRef
12.
go back to reference Dergacheva O, Griffioen KJ, Neff RA, Mendelowitz D (2010) Respiratory modulation of premotor cardiac vagal neurons in the brainstem. Respir Physiol Neurobiol 174:102–110CrossRef Dergacheva O, Griffioen KJ, Neff RA, Mendelowitz D (2010) Respiratory modulation of premotor cardiac vagal neurons in the brainstem. Respir Physiol Neurobiol 174:102–110CrossRef
13.
go back to reference Doncescu A, Siegel P (2015) DNA double-strand break-based nonmonotonic logic. In: Emerging trends in computational biology, bioinformatics, and systems biology, Elsevier, pp 409–427 Doncescu A, Siegel P (2015) DNA double-strand break-based nonmonotonic logic. In: Emerging trends in computational biology, bioinformatics, and systems biology, Elsevier, pp 409–427
14.
go back to reference Doncescu A, Siegel P, Le, T (2014) Representation and efficient algorithms for the study of cell signaling pathways. In: Proceedings of ICAI’14. IEEE Computer Society, pp 504–510 Doncescu A, Siegel P, Le, T (2014) Representation and efficient algorithms for the study of cell signaling pathways. In: Proceedings of ICAI’14. IEEE Computer Society, pp 504–510
15.
go back to reference Inoue K (2011) Logic programming for boolean networks IJCAI’11: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp 924–930 Inoue K (2011) Logic programming for boolean networks IJCAI’11: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp 924–930
16.
go back to reference Kauffman SA, Peterson C, Samuelsson B, Troein C (2003) Random Boolean network models and the yeast transcriptional network. PNAS 100:14796–14799CrossRef Kauffman SA, Peterson C, Samuelsson B, Troein C (2003) Random Boolean network models and the yeast transcriptional network. PNAS 100:14796–14799CrossRef
17.
go back to reference Kripke SA (1963) Semantical analysis of modal logic I Normal modal propositional calculi. Math Log Q 9:67–96CrossRefMATH Kripke SA (1963) Semantical analysis of modal logic I Normal modal propositional calculi. Math Log Q 9:67–96CrossRefMATH
18.
go back to reference Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. PNAS 101:4781–4786CrossRef Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. PNAS 101:4781–4786CrossRef
19.
go back to reference Lifschitz V (1999) Action languages, answer sets, and planning. In: The logic programming paradigm: a 25-year perspective, Springer, pp 357–373 Lifschitz V (1999) Action languages, answer sets, and planning. In: The logic programming paradigm: a 25-year perspective, Springer, pp 357–373
20.
go back to reference Liquitaya-Montiel AJ, Mendoza L (2018) Dynamical analysis of the regulatory network controlling natural killer cells differentiation. Front Physiol 9:1029CrossRef Liquitaya-Montiel AJ, Mendoza L (2018) Dynamical analysis of the regulatory network controlling natural killer cells differentiation. Front Physiol 9:1029CrossRef
21.
go back to reference Melliti T, Noual M, Regnault D, Sené S, Sobieraj J (2015) Asynchronous dynamics of Boolean automata double-cycles. In: Proceedings of UCNC’15. LNCS, vol. 9252. Springer, pp 250–262 Melliti T, Noual M, Regnault D, Sené S, Sobieraj J (2015) Asynchronous dynamics of Boolean automata double-cycles. In: Proceedings of UCNC’15. LNCS, vol. 9252. Springer, pp 250–262
22.
go back to reference Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol 193:307–319CrossRef Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol 193:307–319CrossRef
23.
go back to reference Mendoza L, Thieffry D, Alvarez-Buylla ER (1999) Genetic control of flower morphogenesis in Arabidopsis thaliana. Bioinformatics 15:593–606CrossRef Mendoza L, Thieffry D, Alvarez-Buylla ER (1999) Genetic control of flower morphogenesis in Arabidopsis thaliana. Bioinformatics 15:593–606CrossRef
24.
go back to reference Milano M (2000) Andrea Roli : Solving the Satisfiability Problem Through Boolean Networks. Book Chapter published 2000 in AIIA 99: Advances in Artificial Intelligence, pp 72–83 Milano M (2000) Andrea Roli : Solving the Satisfiability Problem Through Boolean Networks. Book Chapter published 2000 in AIIA 99: Advances in Artificial Intelligence, pp 72–83
26.
go back to reference Remy E, Mossé B, Chaouyia C, Thieffry D (2003) A description of dynamical graphs associated to elementary regulatory circuits. Bioinformatics 19:ii172–ii178CrossRef Remy E, Mossé B, Chaouyia C, Thieffry D (2003) A description of dynamical graphs associated to elementary regulatory circuits. Bioinformatics 19:ii172–ii178CrossRef
27.
go back to reference Remy E, Ruet P, Thieffry D (2008) Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework. Adv Appl Math 41:335–350CrossRefMATH Remy E, Ruet P, Thieffry D (2008) Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework. Adv Appl Math 41:335–350CrossRefMATH
28.
go back to reference Richard A (2010) Negative circuits and sustained oscillations in asynchronous automata networks. Adv Appl Math 44:378–392CrossRefMATH Richard A (2010) Negative circuits and sustained oscillations in asynchronous automata networks. Adv Appl Math 44:378–392CrossRefMATH
29.
go back to reference Richard A, Comet JP (2007) Necessary conditions for multistationarity in discrete dynamical systems. Discret Appl Math 155:2403–2413CrossRefMATH Richard A, Comet JP (2007) Necessary conditions for multistationarity in discrete dynamical systems. Discret Appl Math 155:2403–2413CrossRefMATH
30.
go back to reference Robert F (1980) Itérations sur des ensembles finis et automates cellulaires contractants. Linear Algebra Appl 29:393–412CrossRefMATH Robert F (1980) Itérations sur des ensembles finis et automates cellulaires contractants. Linear Algebra Appl 29:393–412CrossRefMATH
31.
32.
go back to reference Roenneberg T, Merrow M (2003) The network of time: understanding the molecular circadian system. Curr Biol 13:R198–R207CrossRef Roenneberg T, Merrow M (2003) The network of time: understanding the molecular circadian system. Curr Biol 13:R198–R207CrossRef
34.
go back to reference Schwind C, Siegel P (1994) A modal logic for hypothesis theory. Fund Inform 21:89–101MATH Schwind C, Siegel P (1994) A modal logic for hypothesis theory. Fund Inform 21:89–101MATH
35.
go back to reference Shmulevich I, Dougherty ER, Zhang W (2002) From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc IEEE 90:1778–1792CrossRef Shmulevich I, Dougherty ER, Zhang W (2002) From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc IEEE 90:1778–1792CrossRef
36.
go back to reference Siegel P, Doncescu A, Risch V, Sené S (2018) Towards a Boolean dynamical system representation into a nonmonotonic modal logic. In: Proceedings of NMR’18. pp 53–62 Siegel P, Doncescu A, Risch V, Sené S (2018) Towards a Boolean dynamical system representation into a nonmonotonic modal logic. In: Proceedings of NMR’18. pp 53–62
37.
go back to reference Thieffry D, Thomas R (1995) Dynamical behaviour of biological regulatory networks - II. Immunity control in bacteriophage Lambda. Bull Math Biol 57:277–297MATH Thieffry D, Thomas R (1995) Dynamical behaviour of biological regulatory networks - II. Immunity control in bacteriophage Lambda. Bull Math Biol 57:277–297MATH
38.
go back to reference Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585CrossRef Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585CrossRef
39.
go back to reference Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Numerical methods in the study of critical phenomena, Springer, pp 180–193. Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Numerical methods in the study of critical phenomena, Springer, pp 180–193.
40.
go back to reference Zobolas J, Monteiro P, Kuiper M, Flobak A (2022) Boolean function metrics can assist modelers to check and choose logical rules. J Theor Biol 538(111025):7MATH Zobolas J, Monteiro P, Kuiper M, Flobak A (2022) Boolean function metrics can assist modelers to check and choose logical rules. J Theor Biol 538(111025):7MATH
Metadata
Title
Representation of gene regulation networks by hypothesis logic-based Boolean systems
Authors
Pierre Siegel
Andrei Doncescu
Vincent Risch
Sylvain Sené
Publication date
28-09-2022
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 4/2023
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-022-04809-5

Other articles of this Issue 4/2023

The Journal of Supercomputing 4/2023 Go to the issue

Premium Partner