Skip to main content
Erschienen in: The Journal of Supercomputing 4/2023

28.09.2022

Representation of gene regulation networks by hypothesis logic-based Boolean systems

verfasst von: Pierre Siegel, Andrei Doncescu, Vincent Risch, Sylvain Sené

Erschienen in: The Journal of Supercomputing | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Boolean Dynamical Systems (BDSs) are networks described by Boolean variables. A new representation of BDSs is presented in this article by using modal non-monotonic logic (\({\mathcal {H}}\)). This approach allows Boolean Networks to be represented by a set of modal formulas and therefore can be used to describe and learn their properties. The study of a BDS focuses in particular on the search of stable configurations, limit cycles and unstable cycles, which help to characterize a large type of Gene Networks. In this article is presented the identification of such asymptotic properties by introduction of a new concept, ghost extensions. Using ghost extensions, it is possible to translate BDSs in propositional calculus and consequently to use SAT algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The full definition of \(\mathcal {H}\) further states that any formula of first-order logic is in \(\mathscr {L}(\mathcal {H}{})\), and that, whenever f and g are in \(\mathscr {L}(\mathcal {H}{})\), \(\lnot f\), \((f \wedge g)\), \((f \vee g)\), \((f \rightarrow g)\), are in \(\mathscr {L}(\mathcal {H}{})\) too.
 
2
Uncountable because we can apply the Cantor’s diagonal argument on the set of deterministic updating modes which are basically defined as infinite sequences of subsets of nodes of the network.
 
3
Function k may appear naive, because \(x_1 \wedge \lnot x_1 \wedge x_2 = \bot\) (\(\top\) is the logic formula True and \(\bot\) is False), which gives an equivalent translation \(TR (h) = \{\mathrm {H}2 \rightarrow \text{L} \lnot 1, \mathrm {H}\lnot 2 \rightarrow \text{L} 1, \mathrm {H}\bot \rightarrow \text{L} 2, \mathrm {H}\top \rightarrow \text{L} \lnot 2\}\). However, one of the aims of this study is also to show that we can deal with functions of any kind, without the need of a pre-processing. The formalism of \(\mathcal {H}\) implicitly makes the expected simplifications.
 
Literatur
1.
Zurück zum Zitat Akman OE, Watterson S, Parton A, Binns N, Millar AJ, Ghazal P (2012) Digital clocks: simple Boolean models can quantitatively describe circadian systems. J R Soc Interface 9:2365–2382CrossRef Akman OE, Watterson S, Parton A, Binns N, Millar AJ, Ghazal P (2012) Digital clocks: simple Boolean models can quantitatively describe circadian systems. J R Soc Interface 9:2365–2382CrossRef
2.
Zurück zum Zitat Akutsu T (2018) Algorithms For analysis, inference, and control of boolean networks, 9789813233447, World Scientific Publishing Company Akutsu T (2018) Algorithms For analysis, inference, and control of boolean networks, 9789813233447, World Scientific Publishing Company
3.
Zurück zum Zitat Aracena J, González M, Zuñiga A, Mendez MA, Cambiazo V (2006) Regulatory network for cell shape changes during Drosophila ventral furrow formation. J Theor Biol 239:49–62CrossRefMATH Aracena J, González M, Zuñiga A, Mendez MA, Cambiazo V (2006) Regulatory network for cell shape changes during Drosophila ventral furrow formation. J Theor Biol 239:49–62CrossRefMATH
5.
Zurück zum Zitat Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3:e1672CrossRef Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3:e1672CrossRef
6.
Zurück zum Zitat Dealy S, Kauffman S, Socolar J (2005) Modeling pathways of differentiation in genetic regulatory networks with Boolean networks. Complexity 11:52–60CrossRef Dealy S, Kauffman S, Socolar J (2005) Modeling pathways of differentiation in genetic regulatory networks with Boolean networks. Complexity 11:52–60CrossRef
7.
Zurück zum Zitat Delgrande JP, Schaub T (2005) Expressing default logic variants in default logic. J Log Comput 15:593–621CrossRefMATH Delgrande JP, Schaub T (2005) Expressing default logic variants in default logic. J Log Comput 15:593–621CrossRefMATH
8.
Zurück zum Zitat Demongeot J, Elena A, Noual M, Sené S, Thuderoz F (2011) “Immunetworks’’, intersecting circuits and dynamics. J Theor Biol 280:19–33CrossRefMATH Demongeot J, Elena A, Noual M, Sené S, Thuderoz F (2011) “Immunetworks’’, intersecting circuits and dynamics. J Theor Biol 280:19–33CrossRefMATH
9.
Zurück zum Zitat Demongeot J, Goles E, Morvan M, Noual M, Sené S (2010) Attraction basins as gauges of the robustness against boundary conditions in biological complex systems. PLoS ONE 5:e11793CrossRef Demongeot J, Goles E, Morvan M, Noual M, Sené S (2010) Attraction basins as gauges of the robustness against boundary conditions in biological complex systems. PLoS ONE 5:e11793CrossRef
10.
Zurück zum Zitat Demongeot J, Noual M, Sené S (2012) Combinatorics of Boolean automata circuits dynamics. Discret Appl Math 160:398–415CrossRefMATH Demongeot J, Noual M, Sené S (2012) Combinatorics of Boolean automata circuits dynamics. Discret Appl Math 160:398–415CrossRefMATH
11.
Zurück zum Zitat Demongeot J, Sené S (2020) About block-parallel Boolean networks: a position paper. Nat Comput 19:5–13CrossRef Demongeot J, Sené S (2020) About block-parallel Boolean networks: a position paper. Nat Comput 19:5–13CrossRef
12.
Zurück zum Zitat Dergacheva O, Griffioen KJ, Neff RA, Mendelowitz D (2010) Respiratory modulation of premotor cardiac vagal neurons in the brainstem. Respir Physiol Neurobiol 174:102–110CrossRef Dergacheva O, Griffioen KJ, Neff RA, Mendelowitz D (2010) Respiratory modulation of premotor cardiac vagal neurons in the brainstem. Respir Physiol Neurobiol 174:102–110CrossRef
13.
Zurück zum Zitat Doncescu A, Siegel P (2015) DNA double-strand break-based nonmonotonic logic. In: Emerging trends in computational biology, bioinformatics, and systems biology, Elsevier, pp 409–427 Doncescu A, Siegel P (2015) DNA double-strand break-based nonmonotonic logic. In: Emerging trends in computational biology, bioinformatics, and systems biology, Elsevier, pp 409–427
14.
Zurück zum Zitat Doncescu A, Siegel P, Le, T (2014) Representation and efficient algorithms for the study of cell signaling pathways. In: Proceedings of ICAI’14. IEEE Computer Society, pp 504–510 Doncescu A, Siegel P, Le, T (2014) Representation and efficient algorithms for the study of cell signaling pathways. In: Proceedings of ICAI’14. IEEE Computer Society, pp 504–510
15.
Zurück zum Zitat Inoue K (2011) Logic programming for boolean networks IJCAI’11: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp 924–930 Inoue K (2011) Logic programming for boolean networks IJCAI’11: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp 924–930
16.
Zurück zum Zitat Kauffman SA, Peterson C, Samuelsson B, Troein C (2003) Random Boolean network models and the yeast transcriptional network. PNAS 100:14796–14799CrossRef Kauffman SA, Peterson C, Samuelsson B, Troein C (2003) Random Boolean network models and the yeast transcriptional network. PNAS 100:14796–14799CrossRef
17.
Zurück zum Zitat Kripke SA (1963) Semantical analysis of modal logic I Normal modal propositional calculi. Math Log Q 9:67–96CrossRefMATH Kripke SA (1963) Semantical analysis of modal logic I Normal modal propositional calculi. Math Log Q 9:67–96CrossRefMATH
18.
Zurück zum Zitat Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. PNAS 101:4781–4786CrossRef Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. PNAS 101:4781–4786CrossRef
19.
Zurück zum Zitat Lifschitz V (1999) Action languages, answer sets, and planning. In: The logic programming paradigm: a 25-year perspective, Springer, pp 357–373 Lifschitz V (1999) Action languages, answer sets, and planning. In: The logic programming paradigm: a 25-year perspective, Springer, pp 357–373
20.
Zurück zum Zitat Liquitaya-Montiel AJ, Mendoza L (2018) Dynamical analysis of the regulatory network controlling natural killer cells differentiation. Front Physiol 9:1029CrossRef Liquitaya-Montiel AJ, Mendoza L (2018) Dynamical analysis of the regulatory network controlling natural killer cells differentiation. Front Physiol 9:1029CrossRef
21.
Zurück zum Zitat Melliti T, Noual M, Regnault D, Sené S, Sobieraj J (2015) Asynchronous dynamics of Boolean automata double-cycles. In: Proceedings of UCNC’15. LNCS, vol. 9252. Springer, pp 250–262 Melliti T, Noual M, Regnault D, Sené S, Sobieraj J (2015) Asynchronous dynamics of Boolean automata double-cycles. In: Proceedings of UCNC’15. LNCS, vol. 9252. Springer, pp 250–262
22.
Zurück zum Zitat Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol 193:307–319CrossRef Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol 193:307–319CrossRef
23.
Zurück zum Zitat Mendoza L, Thieffry D, Alvarez-Buylla ER (1999) Genetic control of flower morphogenesis in Arabidopsis thaliana. Bioinformatics 15:593–606CrossRef Mendoza L, Thieffry D, Alvarez-Buylla ER (1999) Genetic control of flower morphogenesis in Arabidopsis thaliana. Bioinformatics 15:593–606CrossRef
24.
Zurück zum Zitat Milano M (2000) Andrea Roli : Solving the Satisfiability Problem Through Boolean Networks. Book Chapter published 2000 in AIIA 99: Advances in Artificial Intelligence, pp 72–83 Milano M (2000) Andrea Roli : Solving the Satisfiability Problem Through Boolean Networks. Book Chapter published 2000 in AIIA 99: Advances in Artificial Intelligence, pp 72–83
26.
Zurück zum Zitat Remy E, Mossé B, Chaouyia C, Thieffry D (2003) A description of dynamical graphs associated to elementary regulatory circuits. Bioinformatics 19:ii172–ii178CrossRef Remy E, Mossé B, Chaouyia C, Thieffry D (2003) A description of dynamical graphs associated to elementary regulatory circuits. Bioinformatics 19:ii172–ii178CrossRef
27.
Zurück zum Zitat Remy E, Ruet P, Thieffry D (2008) Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework. Adv Appl Math 41:335–350CrossRefMATH Remy E, Ruet P, Thieffry D (2008) Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework. Adv Appl Math 41:335–350CrossRefMATH
28.
Zurück zum Zitat Richard A (2010) Negative circuits and sustained oscillations in asynchronous automata networks. Adv Appl Math 44:378–392CrossRefMATH Richard A (2010) Negative circuits and sustained oscillations in asynchronous automata networks. Adv Appl Math 44:378–392CrossRefMATH
29.
Zurück zum Zitat Richard A, Comet JP (2007) Necessary conditions for multistationarity in discrete dynamical systems. Discret Appl Math 155:2403–2413CrossRefMATH Richard A, Comet JP (2007) Necessary conditions for multistationarity in discrete dynamical systems. Discret Appl Math 155:2403–2413CrossRefMATH
30.
Zurück zum Zitat Robert F (1980) Itérations sur des ensembles finis et automates cellulaires contractants. Linear Algebra Appl 29:393–412CrossRefMATH Robert F (1980) Itérations sur des ensembles finis et automates cellulaires contractants. Linear Algebra Appl 29:393–412CrossRefMATH
31.
Zurück zum Zitat Robert F (1986) Discrete iterations: a metric study. Springer, BerlinCrossRef Robert F (1986) Discrete iterations: a metric study. Springer, BerlinCrossRef
32.
Zurück zum Zitat Roenneberg T, Merrow M (2003) The network of time: understanding the molecular circadian system. Curr Biol 13:R198–R207CrossRef Roenneberg T, Merrow M (2003) The network of time: understanding the molecular circadian system. Curr Biol 13:R198–R207CrossRef
34.
Zurück zum Zitat Schwind C, Siegel P (1994) A modal logic for hypothesis theory. Fund Inform 21:89–101MATH Schwind C, Siegel P (1994) A modal logic for hypothesis theory. Fund Inform 21:89–101MATH
35.
Zurück zum Zitat Shmulevich I, Dougherty ER, Zhang W (2002) From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc IEEE 90:1778–1792CrossRef Shmulevich I, Dougherty ER, Zhang W (2002) From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc IEEE 90:1778–1792CrossRef
36.
Zurück zum Zitat Siegel P, Doncescu A, Risch V, Sené S (2018) Towards a Boolean dynamical system representation into a nonmonotonic modal logic. In: Proceedings of NMR’18. pp 53–62 Siegel P, Doncescu A, Risch V, Sené S (2018) Towards a Boolean dynamical system representation into a nonmonotonic modal logic. In: Proceedings of NMR’18. pp 53–62
37.
Zurück zum Zitat Thieffry D, Thomas R (1995) Dynamical behaviour of biological regulatory networks - II. Immunity control in bacteriophage Lambda. Bull Math Biol 57:277–297MATH Thieffry D, Thomas R (1995) Dynamical behaviour of biological regulatory networks - II. Immunity control in bacteriophage Lambda. Bull Math Biol 57:277–297MATH
38.
Zurück zum Zitat Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585CrossRef Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585CrossRef
39.
Zurück zum Zitat Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Numerical methods in the study of critical phenomena, Springer, pp 180–193. Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Numerical methods in the study of critical phenomena, Springer, pp 180–193.
40.
Zurück zum Zitat Zobolas J, Monteiro P, Kuiper M, Flobak A (2022) Boolean function metrics can assist modelers to check and choose logical rules. J Theor Biol 538(111025):7MATH Zobolas J, Monteiro P, Kuiper M, Flobak A (2022) Boolean function metrics can assist modelers to check and choose logical rules. J Theor Biol 538(111025):7MATH
Metadaten
Titel
Representation of gene regulation networks by hypothesis logic-based Boolean systems
verfasst von
Pierre Siegel
Andrei Doncescu
Vincent Risch
Sylvain Sené
Publikationsdatum
28.09.2022
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 4/2023
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-022-04809-5

Weitere Artikel der Ausgabe 4/2023

The Journal of Supercomputing 4/2023 Zur Ausgabe

Premium Partner