Skip to main content
Top
Published in: Neural Computing and Applications 14/2022

14-03-2022 | Original Article

Res2Unet: A multi-scale channel attention network for retinal vessel segmentation

Authors: Xuejian Li, Jiaqi Ding, Jijun Tang, Fei Guo

Published in: Neural Computing and Applications | Issue 14/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Retinal diseases can be found timely by observing retinal fundus images. So extracting blood vessels from retinal images is an important part because it is the way to show the changes of vessels. However, most of the previous methods based on deep learning cared more about accuracy and ignored the complexity of the model for segmenting retinal vessels, which makes these methods difficult to apply to medical equipment. Besides, due to the great differences in the width of retinal vessels, some methods cannot well-extract all blood vessels at the same time. Based on above limitations, we propose a new lightweight network, called Res2Unet. It applies a multi-scale strategy to extract blood vessels of different widths and integrates the strategy into the channels to greatly reduce parameters and computation resources. Res2Unet also uses channel-attention mechanism to promote the communication between channels and recalibrate the relationship of channel features. Then, we propose two post-processing methods. One called the local threshold method(LTM) uses a lower local threshold to excavate hidden blood vessels in discontinuous blood vessels of the probability maps. The other named weighted correction method (WCM) combines the probability maps of Unet and Res2Unet to remove false positive and false negative samples. On the DRIVE dataset, the Dice, IOU and AUC of our Res2Unet reach 0.8186, 0.6926 and 0.9772, respectively, which are better than that of Unet with 0.8109, 0.6817 and 0.9751. Importantly, the number of parameters of Res2Unet are about one-third of Unet. It means that Res2Unet has less hardware requirements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aguiree F, Brown A, Cho NH, Dahlquist G, Dodd S, Dunning T, Hirst M, Hwang C, Magliano D, Patterson C (2013) Idf diabetes atlas : sixth edition. International Diabetes Federation Aguiree F, Brown A, Cho NH, Dahlquist G, Dodd S, Dunning T, Hirst M, Hwang C, Magliano D, Patterson C (2013) Idf diabetes atlas : sixth edition. International Diabetes Federation
2.
go back to reference Salazar-Gonzalez A, Kaba D, Li Y, Liu X (2014) Segmentation of the blood vessels and optic disk in retinal images. IEEE J Biomed Health Infor 18(6):1874–1886CrossRef Salazar-Gonzalez A, Kaba D, Li Y, Liu X (2014) Segmentation of the blood vessels and optic disk in retinal images. IEEE J Biomed Health Infor 18(6):1874–1886CrossRef
3.
go back to reference Annunziata R, Garzelli A, Ballerini L, Mecocci A, Trucco E (2016) Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J Biomed Health Info 20(4):1129–1138CrossRef Annunziata R, Garzelli A, Ballerini L, Mecocci A, Trucco E (2016) Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J Biomed Health Info 20(4):1129–1138CrossRef
4.
go back to reference Orlando JI, Prokofyeva E, Blaschko MB (2016) A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Transact Biomed Eng 64(1):16–27CrossRef Orlando JI, Prokofyeva E, Blaschko MB (2016) A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Transact Biomed Eng 64(1):16–27CrossRef
5.
go back to reference Zhang Y, Chung ACS (2018) Deep supervision with additional labels for retinal vessel segmentation task. In: Medical image computing and computer assisted intervention – MICCAI 2018, pages 83–91. Springer, Cham Zhang Y, Chung ACS (2018) Deep supervision with additional labels for retinal vessel segmentation task. In: Medical image computing and computer assisted intervention – MICCAI 2018, pages 83–91. Springer, Cham
6.
go back to reference Filipe MOA, Rafael MPS, Alberto BSC (2018) Retinal vessel segmentation based on fully convolutional neural networks. Expert Sys Appl 112:229–242CrossRef Filipe MOA, Rafael MPS, Alberto BSC (2018) Retinal vessel segmentation based on fully convolutional neural networks. Expert Sys Appl 112:229–242CrossRef
7.
go back to reference Wu Y, Xia Y, Song Y, Zhang Y, Cai W(2018) Multiscale network followed network model for retinal vessel segmentation. In Medical image computing and computer assisted intervention – MICCAI 2018, pages 119–126 Wu Y, Xia Y, Song Y, Zhang Y, Cai W(2018) Multiscale network followed network model for retinal vessel segmentation. In Medical image computing and computer assisted intervention – MICCAI 2018, pages 119–126
8.
go back to reference Li Q, Feng B, Xie LP, Liang P, Zhang H, Wang T (2015) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imag 35(1):109–118CrossRef Li Q, Feng B, Xie LP, Liang P, Zhang H, Wang T (2015) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imag 35(1):109–118CrossRef
9.
go back to reference Sheng B, Li P, Mo S, Li H, Hou X, Wu Q, Qin J, Fang R, Feng DD (2019) Retinal vessel segmentation using minimum spanning superpixel tree detector. IEEE Trans Cybern 49(7):2707–2719CrossRef Sheng B, Li P, Mo S, Li H, Hou X, Wu Q, Qin J, Fang R, Feng DD (2019) Retinal vessel segmentation using minimum spanning superpixel tree detector. IEEE Trans Cybern 49(7):2707–2719CrossRef
10.
go back to reference Rodrigues EO, Conci A, Liatsis P (2020) Element: multi-modal retinal vessel segmentation based on a coupled region growing and machine learning approach. IEEE J Biomed Health Info 24(12):3507–3519CrossRef Rodrigues EO, Conci A, Liatsis P (2020) Element: multi-modal retinal vessel segmentation based on a coupled region growing and machine learning approach. IEEE J Biomed Health Info 24(12):3507–3519CrossRef
11.
go back to reference Ma Y, Hao H, Xie J, Fu H, Zhang J, Yang J, Wang Z, Liu J, Zheng Y, Zhao Y (2021) Rose: a retinal oct-angiography vessel segmentation dataset and new model. IEEE Transact Med Imag 40(3):928–939CrossRef Ma Y, Hao H, Xie J, Fu H, Zhang J, Yang J, Wang Z, Liu J, Zheng Y, Zhao Y (2021) Rose: a retinal oct-angiography vessel segmentation dataset and new model. IEEE Transact Med Imag 40(3):928–939CrossRef
12.
go back to reference Wang D, Haytham A, Pottenburgh J, Saeedi O, Tao Y (2020) Hard attention net for automatic retinal vessel segmentation. IEEE J Biomed Health Info 24(12):3384–3396CrossRef Wang D, Haytham A, Pottenburgh J, Saeedi O, Tao Y (2020) Hard attention net for automatic retinal vessel segmentation. IEEE J Biomed Health Info 24(12):3384–3396CrossRef
13.
go back to reference Li X, Jiang Y, Li M, Yin S (2021) Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Transact Ind Info 17(3):1958–1967CrossRef Li X, Jiang Y, Li M, Yin S (2021) Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Transact Ind Info 17(3):1958–1967CrossRef
14.
go back to reference Lv Y, Ma H, Li J, Liu S (2020) Attention guided u-net with atrous convolution for accurate retinal vessels segmentation. IEEE Access 8:32826–32839CrossRef Lv Y, Ma H, Li J, Liu S (2020) Attention guided u-net with atrous convolution for accurate retinal vessels segmentation. IEEE Access 8:32826–32839CrossRef
15.
go back to reference Fu Q, Li S, Wang X (2020) Mscnn-am: a multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation. IEEE Access 8:163926–163936CrossRef Fu Q, Li S, Wang X (2020) Mscnn-am: a multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation. IEEE Access 8:163926–163936CrossRef
16.
go back to reference Zhang S,Fu H, Yan Y, Zhang Y, Wu Q, Yang M, Tan M, Xu Y 2019) Attention guided network for retinal image segmentation. In:Medical image computing and computer assisted intervention – MICCAI 2019, pages 797–805, Springer, Cham Zhang S,Fu H, Yan Y, Zhang Y, Wu Q, Yang M, Tan M, Xu Y 2019) Attention guided network for retinal image segmentation. In:Medical image computing and computer assisted intervention – MICCAI 2019, pages 797–805, Springer, Cham
17.
go back to reference Mou L, Zhao Y, Chen L (2019) Cs-net: channel and spatial attention network for curvilinear structure segmentation. In MICCAI 2019: Medical image computing and computer assisted intervention - MICCAI 2019, pages 721–730, Springer, Cham Mou L, Zhao Y, Chen L (2019) Cs-net: channel and spatial attention network for curvilinear structure segmentation. In MICCAI 2019: Medical image computing and computer assisted intervention - MICCAI 2019, pages 721–730, Springer, Cham
18.
go back to reference Ma W,Yu S, Ma K, Wang J, Ding X, Zheng Y(2019) Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification. In:International conference on medical image computing and computer-assisted intervention, pages 769–778, Springer, Cham Ma W,Yu S, Ma K, Wang J, Ding X, Zheng Y(2019) Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification. In:International conference on medical image computing and computer-assisted intervention, pages 769–778, Springer, Cham
19.
go back to reference Li D, Bawany MH, Kuriyan AE, Ramchandran RS, Sharma G (2020) A novel deep learning pipeline for retinal vessel detection in fluorescein angiography. IEEE Transactions on Image Processing, PP(99):1–1 Li D, Bawany MH, Kuriyan AE, Ramchandran RS, Sharma G (2020) A novel deep learning pipeline for retinal vessel detection in fluorescein angiography. IEEE Transactions on Image Processing, PP(99):1–1
20.
go back to reference Xie S, Nie H(2013) Retinal vascular image segmentation using genetic algorithm plus fcm clustering. In:2013 Third International conference on intelligent system design and engineering applications, pages 1225–1228, Hong Kong, China. IEEE Xie S, Nie H(2013) Retinal vascular image segmentation using genetic algorithm plus fcm clustering. In:2013 Third International conference on intelligent system design and engineering applications, pages 1225–1228, Hong Kong, China. IEEE
21.
go back to reference Roychowdhury S, Koozekanani DD, Parhi KK (2015) Iterative vessel segmentation of fundus images. IEEE Trans Biomed Eng 62(7):1738–1749CrossRef Roychowdhury S, Koozekanani DD, Parhi KK (2015) Iterative vessel segmentation of fundus images. IEEE Trans Biomed Eng 62(7):1738–1749CrossRef
22.
go back to reference Liu B, Gu L, Lu F (2019) Unsupervised ensemble strategy for retinal vessel segmentation. In:Medical image computing and computer assisted intervention – MICCAI 2019, pages 111–119. Springer, Cham Liu B, Gu L, Lu F (2019) Unsupervised ensemble strategy for retinal vessel segmentation. In:Medical image computing and computer assisted intervention – MICCAI 2019, pages 111–119. Springer, Cham
23.
go back to reference Shah SAA, Shahzad A, Khan MA, Lu C, Tang TB (2019) Unsupervised method for retinal vessel segmentation based on gabor wavelet and multiscale line detector. IEEE Access 7:167221–167228CrossRef Shah SAA, Shahzad A, Khan MA, Lu C, Tang TB (2019) Unsupervised method for retinal vessel segmentation based on gabor wavelet and multiscale line detector. IEEE Access 7:167221–167228CrossRef
24.
go back to reference Wu Y, Xia Y, Song Y, Zhang D, Cai W (2019) Vessel-net: retinal vessel segmentation under multi-path supervision. In:International conference on medical image computing and computer-assisted intervention, pages 264–272. Springer International Publishing, Cham Wu Y, Xia Y, Song Y, Zhang D, Cai W (2019) Vessel-net: retinal vessel segmentation under multi-path supervision. In:International conference on medical image computing and computer-assisted intervention, pages 264–272. Springer International Publishing, Cham
25.
go back to reference Kamran SA, Hossain KF, Tavakkoli A, Zuckerbrod SL, Sanders KM, Baker SA (2021) RV-GAN: Segmenting retinal vascular structure in fundus photographs using a novel multi-scale generative adversarial network. arXiv e-prints, page arXiv:2101.00535 Kamran SA, Hossain KF, Tavakkoli A, Zuckerbrod SL, Sanders KM, Baker SA (2021) RV-GAN: Segmenting retinal vascular structure in fundus photographs using a novel multi-scale generative adversarial network. arXiv e-prints, page arXiv:​2101.​00535
26.
go back to reference Zhou Y, Yu H, Shi H (2021) Study group learning: Improving retinal vessel segmentation trained with noisy labels. In:Medical image computing and computer assisted intervention – MICCAI 2020”, pages 57–67. Springer, Cham Zhou Y, Yu H, Shi H (2021) Study group learning: Improving retinal vessel segmentation trained with noisy labels. In:Medical image computing and computer assisted intervention – MICCAI 2020”, pages 57–67. Springer, Cham
27.
go back to reference Guo C, Szemenyei M, Yi Y, Wang W, Chen B, Fan C (2020) SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation. arXiv e-prints, page arXiv:2004.03696 Guo C, Szemenyei M, Yi Y, Wang W, Chen B, Fan C (2020) SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation. arXiv e-prints, page arXiv:​2004.​03696
28.
go back to reference Li L, Verma M, Nakashima Y, Nagahara H, Kawasaki R (2020) Iternet: retinal image segmentation utilizing structural redundancy in vessel networks. In:2020 IEEE winter conference on applications of computer vision (WACV), pages 3654, Snowmass, CO, USA. IEEE Li L, Verma M, Nakashima Y, Nagahara H, Kawasaki R (2020) Iternet: retinal image segmentation utilizing structural redundancy in vessel networks. In:2020 IEEE winter conference on applications of computer vision (WACV), pages 3654, Snowmass, CO, USA. IEEE
29.
go back to reference Zhuang J (2018) LadderNet: multi-path networks based on U-Net for medical image segmentation. arXiv e-prints, page arXiv:1810.07810 Zhuang J (2018) LadderNet: multi-path networks based on U-Net for medical image segmentation. arXiv e-prints, page arXiv:1810.07810
30.
go back to reference Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In:2018 IEEE/CVF conference on computer vision and pattern recognition, pages 4510–4520, Salt Lake City, UT, USA. IEEE Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In:2018 IEEE/CVF conference on computer vision and pattern recognition, pages 4510–4520, Salt Lake City, UT, USA. IEEE
31.
go back to reference Ma N, Zhang X, Zheng HT, Sun J (2018) Shufflenet v2: Practical guidelines for efficient cnn architecture design. In :Computer vision – ECCV 2018, pages 122–138. Springer, Cham Ma N, Zhang X, Zheng HT, Sun J (2018) Shufflenet v2: Practical guidelines for efficient cnn architecture design. In :Computer vision – ECCV 2018, pages 122–138. Springer, Cham
32.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In :2016 IEEE conference on computer vision and pattern recognition (CVPR), pages 4510-4520, Salt Lake City, UT, USA, 2018. IEEE Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In :2016 IEEE conference on computer vision and pattern recognition (CVPR), pages 4510-4520, Salt Lake City, UT, USA, 2018. IEEE
33.
go back to reference Gao SH, Cheng MM, Zhao K, Zhang XY, Torr P (2019) Res2net: a new multi-scale backbone architecture. IEEE Transact Patt Anal Mach Intell 43(2):652–662CrossRef Gao SH, Cheng MM, Zhao K, Zhang XY, Torr P (2019) Res2net: a new multi-scale backbone architecture. IEEE Transact Patt Anal Mach Intell 43(2):652–662CrossRef
34.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In:Medical image computing and computer-assisted intervention – MICCAI 2015 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In:Medical image computing and computer-assisted intervention – MICCAI 2015
35.
go back to reference Hu J, Shen L, Albanie S, Sun G, Wu E (2017) Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP(99):2011–2023 Hu J, Shen L, Albanie S, Sun G, Wu E (2017) Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP(99):2011–2023
36.
go back to reference Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proceed IEEE 86(11):2278–2324CrossRef Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proceed IEEE 86(11):2278–2324CrossRef
37.
go back to reference Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, vol 25 Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, vol 25
39.
go back to reference Long Jonathan, Shelhamer Evan, Darrell Trevor (2015) Fully convolutional networks for semantic segmentation. IEEE Trans Patt Anal Mach Intell 39(4):640–651 Long Jonathan, Shelhamer Evan, Darrell Trevor (2015) Fully convolutional networks for semantic segmentation. IEEE Trans Patt Anal Mach Intell 39(4):640–651
40.
go back to reference Zhang Z, Fu H, Dai H, Shen J, Shao L (2019) Et-net: a generic edge-attention guidance network for medical image segmentation. In:Medical image computing and computer assisted intervention – MICCAI 2019” Zhang Z, Fu H, Dai H, Shen J, Shao L (2019) Et-net: a generic edge-attention guidance network for medical image segmentation. In:Medical image computing and computer assisted intervention – MICCAI 2019”
41.
go back to reference Xiao X, Lian S, Luo Z, Li S (2018) Weighted res-unet for high-quality retina vessel segmentation. In 2018 9th International conference on information technology in medicine and education (ITME), pages 327–331, Las Vegas, NV, USA. IEEE Xiao X, Lian S, Luo Z, Li S (2018) Weighted res-unet for high-quality retina vessel segmentation. In 2018 9th International conference on information technology in medicine and education (ITME), pages 327–331, Las Vegas, NV, USA. IEEE
42.
go back to reference Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for medical image segmentation. arXiv e-prints, page arXiv:1802.06955 Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK (2018) Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for medical image segmentation. arXiv e-prints, page arXiv:​1802.​06955
43.
go back to reference Mou Lei, Chen Li, Cheng Jun, Zaiwang Gu, Zhao Yitian, Liu Jiang (2020) Dense dilated network with probability regularized walk for vessel detection. IEEE Transact Medical Imag 39(5):1392–1403CrossRef Mou Lei, Chen Li, Cheng Jun, Zaiwang Gu, Zhao Yitian, Liu Jiang (2020) Dense dilated network with probability regularized walk for vessel detection. IEEE Transact Medical Imag 39(5):1392–1403CrossRef
44.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Rabinovich A (2014) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Rabinovich A (2014) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
45.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition (CVPR), pages 770–778, Las Vegas, NV, USA. IEEE He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition (CVPR), pages 770–778, Las Vegas, NV, USA. IEEE
46.
go back to reference Jha D, Smedsrud PH, Riegler MA, Johansen D, Lange TD, Halvorsen P, Johansen HD (2019) Resunet++: An advanced architecture for medical image segmentation. In 2019 IEEE international symposium on multimedia (ISM), pages 225–2255, San Diego, CA, USA. IEEE Jha D, Smedsrud PH, Riegler MA, Johansen D, Lange TD, Halvorsen P, Johansen HD (2019) Resunet++: An advanced architecture for medical image segmentation. In 2019 IEEE international symposium on multimedia (ISM), pages 225–2255, San Diego, CA, USA. IEEE
47.
go back to reference Tang Z, Liu X, Li Y, Yap P, Shen D (2020) Multi-atlas brain parcellation using squeeze-and-excitation fully convolutional networks. IEEE Transact Image Process 29:6864–6872CrossRef Tang Z, Liu X, Li Y, Yap P, Shen D (2020) Multi-atlas brain parcellation using squeeze-and-excitation fully convolutional networks. IEEE Transact Image Process 29:6864–6872CrossRef
48.
go back to reference Marín D, Aquino A, Gegundez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Transact Med Imag 30(1):146–158CrossRef Marín D, Aquino A, Gegundez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Transact Med Imag 30(1):146–158CrossRef
49.
go back to reference Dasgupta Avijit, Singh Sonam (2017) A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), pages 248–251, Melbourne, VIC, Australia. IEEE Dasgupta Avijit, Singh Sonam (2017) A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), pages 248–251, Melbourne, VIC, Australia. IEEE
50.
go back to reference Zhou Z, Mmr Siddiquee, Tajbakhsh N, Liang J (2020) Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transact Med Imag 39(6):1856–1867CrossRef Zhou Z, Mmr Siddiquee, Tajbakhsh N, Liang J (2020) Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transact Med Imag 39(6):1856–1867CrossRef
51.
go back to reference Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D (2018) Attention U-Net: Learning Where to Look for the Pancreas. arXiv e-prints, page arXiv:1804.03999 Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D (2018) Attention U-Net: Learning Where to Look for the Pancreas. arXiv e-prints, page arXiv:​1804.​03999
52.
go back to reference Zaiwang Gu, Cheng Jun, Huazhu Fu, Zhou Kang, Hao Huaying, Zhao Yitian, Zhang Tianyang, Gao Shenghua, Liu Jiang (2019) Ce-net: context encoder network for 2d medical image segmentation. IEEE Transact Med Imag 38(10):2281–2292CrossRef Zaiwang Gu, Cheng Jun, Huazhu Fu, Zhou Kang, Hao Huaying, Zhao Yitian, Zhang Tianyang, Gao Shenghua, Liu Jiang (2019) Ce-net: context encoder network for 2d medical image segmentation. IEEE Transact Med Imag 38(10):2281–2292CrossRef
53.
go back to reference Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57CrossRef Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57CrossRef
54.
go back to reference Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Transact Med Imag 34(9):1797–1807CrossRef Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Transact Med Imag 34(9):1797–1807CrossRef
55.
go back to reference Zhou L, Qi Y, Xun X, Yun G, Yang J (2017) Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement. Comput Method Program Biomed 148:13–25CrossRef Zhou L, Qi Y, Xun X, Yun G, Yang J (2017) Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement. Comput Method Program Biomed 148:13–25CrossRef
56.
go back to reference Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transact Biomed Eng 59(9):2538–2548CrossRef Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transact Biomed Eng 59(9):2538–2548CrossRef
57.
go back to reference Yan Z, Yang X, Cheng KT (2018) Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Transact Biomed Eng 65(9):1912–1923CrossRef Yan Z, Yang X, Cheng KT (2018) Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Transact Biomed Eng 65(9):1912–1923CrossRef
58.
go back to reference Yan Zengqiang, Yang Xin, Cheng Kwang-Ting (2019) A three-stage deep learning model for accurate retinal vessel segmentation. IEEE J Biomed Health Info 23(4):1427–1436CrossRef Yan Zengqiang, Yang Xin, Cheng Kwang-Ting (2019) A three-stage deep learning model for accurate retinal vessel segmentation. IEEE J Biomed Health Info 23(4):1427–1436CrossRef
59.
go back to reference Sreejini KS, Govindan VK (2015) Improved multiscale matched filter for retina vessel segmentation using PSO algorithm. Egypt Info J 16(3):253–260 Sreejini KS, Govindan VK (2015) Improved multiscale matched filter for retina vessel segmentation using PSO algorithm. Egypt Info J 16(3):253–260
60.
go back to reference Kumar K, Samal D, Suraj (2020) Automated retinal vessel segmentation based on morphological preprocessing and 2d-gabor wavelets. In:Advanced computing and intelligent engineering, pages 411-423 2020. Springer, Singapore Kumar K, Samal D, Suraj (2020) Automated retinal vessel segmentation based on morphological preprocessing and 2d-gabor wavelets. In:Advanced computing and intelligent engineering, pages 411-423 2020. Springer, Singapore
Metadata
Title
Res2Unet: A multi-scale channel attention network for retinal vessel segmentation
Authors
Xuejian Li
Jiaqi Ding
Jijun Tang
Fei Guo
Publication date
14-03-2022
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 14/2022
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-07086-8

Other articles of this Issue 14/2022

Neural Computing and Applications 14/2022 Go to the issue

Premium Partner