Skip to main content
Top
Published in: Cognitive Neurodynamics 1/2021

27-02-2021 | Editorial

Research progress of neurodynamics in China

Authors: Rubin Wang, Xiaochuan Pan

Published in: Cognitive Neurodynamics | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Since Professor Walter Freeman, a molecular neurobiologist from University of Berkeley, put forward the concept of neurodynamics over 20 years ago (Freeman 2000), the usage of dynamics theories and methods to study cognitive and nervous system activities has become a new field of research (Basar 1998,2011; Tass 1999; Wang et al. 2015; Wang and Wang 2018; Ravishankar Rao 2018; Haken 1996; Kawato 2000; Takeda 1999; David and Laughlin 2009; Abbott 2008). Research on the topic has sprung up like bamboo shoots. Neurodynamics is more often called computational neuroscience in Europe and the United States, and it is named neuromechanics in Japan (Takeda 1999). Neuroscientists in experimental fields prefer the term neuroinformatics’ to describe the basic law of neural information processing qualitatively or quantitatively (Ascoli 2016; Schutter 2016; Raichle and Gusnard 2002). But no matter what name we use, the basic fact remains that neuroscientists and scientists and engineers in the field of artificial intelligence have realized that the development of cognitive neuroscience not only depends on the progress of experimental techniques and data more and more, but also needs to understand and mine underlying principles of dynamical signal processing and transmission in brain networks and the internal mechanism of neural coding distribution mode. The laws and essences behind the vast amount of experimental data, enable us to understand and master the brain's operational methods and the pathogenesis of various brain diseases. An accurate prediction for patients with potential degenerative brain diseases can also be made possible (Laughlin 2001; Chen et al. 2014). …

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ascoli GA (2016) On the data-driven road from neurology to neuronomy. Neuroinformatics 14:251–252CrossRef Ascoli GA (2016) On the data-driven road from neurology to neuronomy. Neuroinformatics 14:251–252CrossRef
go back to reference Basar E (1998) Brain function and oscillators I: Brain oscillators. Principles and approaches. Springer, BerlinCrossRef Basar E (1998) Brain function and oscillators I: Brain oscillators. Principles and approaches. Springer, BerlinCrossRef
go back to reference Basar E (2011) Brain–body–mind in the nebulous cartesian system: a holistic approach by oscillations. Springer, BerlinCrossRef Basar E (2011) Brain–body–mind in the nebulous cartesian system: a holistic approach by oscillations. Springer, BerlinCrossRef
go back to reference Chen M, Guo D, Wang T et al (2014) Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput Biol 10:e1003495CrossRef Chen M, Guo D, Wang T et al (2014) Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput Biol 10:e1003495CrossRef
go back to reference David W, Laughlin MC (2009) Ruling out and ruling in neural codes. Proc Natl Acad Sci PNAS 106(14):5936–5941CrossRef David W, Laughlin MC (2009) Ruling out and ruling in neural codes. Proc Natl Acad Sci PNAS 106(14):5936–5941CrossRef
go back to reference De Schutter E (2016) Neuroinformatics for degenerate brains. Neuroinformatics 14:1–3CrossRef De Schutter E (2016) Neuroinformatics for degenerate brains. Neuroinformatics 14:1–3CrossRef
go back to reference Freeman WJ (2000) Neurodynamics. Springer, London Freeman WJ (2000) Neurodynamics. Springer, London
go back to reference Kawato M (2000) The computational theory of brain. Sankyo Press, Tokyo (in Japanese) Kawato M (2000) The computational theory of brain. Sankyo Press, Tokyo (in Japanese)
go back to reference Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11(4):475–480CrossRef Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11(4):475–480CrossRef
go back to reference Peng J, Wang Y, Wang R, Kong W, Zhang J (2021) Neural coupling mechanism in fMRI hemodynamics. Nonlinear Dyn 103:883–895CrossRef Peng J, Wang Y, Wang R, Kong W, Zhang J (2021) Neural coupling mechanism in fMRI hemodynamics. Nonlinear Dyn 103:883–895CrossRef
go back to reference Raichle ME, Gusnard DA (2002) Appraising the brain’s energy budget. Proc Natl Acad Sci PNAS 99(16):10237–10239CrossRef Raichle ME, Gusnard DA (2002) Appraising the brain’s energy budget. Proc Natl Acad Sci PNAS 99(16):10237–10239CrossRef
go back to reference Ravishankar Rao A (2018) An oscillatory neural network model that demonstrates the benefits of multisensory learning. Cognit Neurodyn 12(5):481–499CrossRef Ravishankar Rao A (2018) An oscillatory neural network model that demonstrates the benefits of multisensory learning. Cognit Neurodyn 12(5):481–499CrossRef
go back to reference Takeda G (1999) Brain and physics. Shokabo Press, Tokyo (in Japanese) Takeda G (1999) Brain and physics. Shokabo Press, Tokyo (in Japanese)
go back to reference Wang R, Wang Z (2018) The essence of neuronal activity from the consistency of two different neuron models. Nonlinear Dyn 92(3):973–982CrossRef Wang R, Wang Z (2018) The essence of neuronal activity from the consistency of two different neuron models. Nonlinear Dyn 92(3):973–982CrossRef
go back to reference Wang R, Tsuda I, Zhang Z (2015) A new work mechanism on neuronal activity. Int J Neural Syst 25(3):1450037CrossRef Wang R, Tsuda I, Zhang Z (2015) A new work mechanism on neuronal activity. Int J Neural Syst 25(3):1450037CrossRef
go back to reference Wang R, Wang Y, Xu X, Pan X (2020) Mechanical thoughts and applications in cognitive neuroscience. Adv Mech 50:450–505 (in Chinese) Wang R, Wang Y, Xu X, Pan X (2020) Mechanical thoughts and applications in cognitive neuroscience. Adv Mech 50:450–505 (in Chinese)
Metadata
Title
Research progress of neurodynamics in China
Authors
Rubin Wang
Xiaochuan Pan
Publication date
27-02-2021
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 1/2021
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-021-09665-2

Other articles of this Issue 1/2021

Cognitive Neurodynamics 1/2021 Go to the issue