Skip to main content
Top

2018 | OriginalPaper | Chapter

Residual-Based Large Eddy Simulation with Isogeometric Divergence-Conforming Discretizations

Authors : John A. Evans, Christopher Coley, Ryan M. Aronson, Corey L. Wetterer-Nelson, Yuri Bazilevs

Published in: Frontiers in Computational Fluid-Structure Interaction and Flow Simulation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Isogeometric divergence-conforming discretizations have recently arisen as an attractive candidate for approximation of the incompressible Navier-Stokes problem. By construction, isogeometric divergence-conforming discretizations yield discrete velocity fields which are pointwise divergence-free, and as a consequence, they admit discrete balance laws for mass, momentum, angular momentum, energy, vorticity, enstrophy, and helicity. It has been demonstrated in previous work that isogeometric divergence-conforming discretizations are simultaneously more accurate and more stable than classical mixed methods when applied to the direct numerical simulation of incompressible fluid flow. In this chapter, we present two new residual-based large eddy simulation methodologies specifically designed for isogeometric divergence-conforming discretizations. The first methodology arises from a structure-preserving variational multiscale analysis of the incompressible Navier-Stokes equations. The second methodology combines ideas from variational multiscale analysis and large eddy simulation methodologies employing an eddy viscosity, yielding a residual-based eddy viscosity method. We develop quasi-static and dynamic models for both methodologies. Numerical results illustrate the new methodologies yield improved results as compared with standard eddy viscosity based approaches when applied to a transitional flow problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wall-adapting local eddy viscosity (WALE) model. In ANSYS Fluent Theory Guide. Wall-adapting local eddy viscosity (WALE) model. In ANSYS Fluent Theory Guide.
2.
go back to reference F. Bashforth and J. C. Adams. Theories of Capillary Action. Cambridge University Press, London, 1883. F. Bashforth and J. C. Adams. Theories of Capillary Action. Cambridge University Press, London, 1883.
3.
go back to reference Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.MathSciNetCrossRef Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.MathSciNetCrossRef
4.
go back to reference Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers and Fluids, 36:12–26, 2007.MathSciNetCrossRef Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers and Fluids, 36:12–26, 2007.MathSciNetCrossRef
5.
go back to reference Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and Engineering, 196:4853–4862, 2007.MathSciNetCrossRef Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and Engineering, 196:4853–4862, 2007.MathSciNetCrossRef
6.
go back to reference L. Biferale, S. Musacchio, and F. Toschi. Inverse energy cascade in three-dimensional isotropic turbulence. Physical Review Letters, 108:164501, 2012.CrossRef L. Biferale, S. Musacchio, and F. Toschi. Inverse energy cascade in three-dimensional isotropic turbulence. Physical Review Letters, 108:164501, 2012.CrossRef
7.
go back to reference M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes. Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering, 87:15–47, 2011.MathSciNetCrossRef M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes. Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering, 87:15–47, 2011.MathSciNetCrossRef
8.
go back to reference M. Brachet, D. Meiron, B. Nickel, and R. Morf. Small-scale structure of the Taylor-Green vortex. Journal of Fluid Mechanics, 130:411–452, 1983.CrossRef M. Brachet, D. Meiron, B. Nickel, and R. Morf. Small-scale structure of the Taylor-Green vortex. Journal of Fluid Mechanics, 130:411–452, 1983.CrossRef
9.
go back to reference D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Applied Numerical Mathematics, 23:3–19, 1997.MathSciNetCrossRef D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Applied Numerical Mathematics, 23:3–19, 1997.MathSciNetCrossRef
10.
go back to reference A. Buffa, C. de Falco, and R. Vázquez. Isogeometric analysis: Stable elements for the 2D Stokes equation. International Journal for Numerical Methods in Fluids, 65:1407–1422, 2011.MathSciNetCrossRef A. Buffa, C. de Falco, and R. Vázquez. Isogeometric analysis: Stable elements for the 2D Stokes equation. International Journal for Numerical Methods in Fluids, 65:1407–1422, 2011.MathSciNetCrossRef
11.
go back to reference A. Buffa, J. Rivas, G. Sangalli, and R. Vázquez. Isogeometric discrete differential forms in three dimensions. SIAM Journal on Numerical Analysis, 49:818–844, 2011.MathSciNetCrossRef A. Buffa, J. Rivas, G. Sangalli, and R. Vázquez. Isogeometric discrete differential forms in three dimensions. SIAM Journal on Numerical Analysis, 49:818–844, 2011.MathSciNetCrossRef
12.
go back to reference J.-P. Chollet and M. Lesieur. Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. Journal of the Atmospheric Sciences, 38:2747–2757, 1981.CrossRef J.-P. Chollet and M. Lesieur. Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. Journal of the Atmospheric Sciences, 38:2747–2757, 1981.CrossRef
13.
go back to reference R. Codina, J. Principe, O. Guasch, and S. Badia. Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Computer Methods in Applied Mechanics and Engineering, 196:2413–2430, 2007.MathSciNetCrossRef R. Codina, J. Principe, O. Guasch, and S. Badia. Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Computer Methods in Applied Mechanics and Engineering, 196:2413–2430, 2007.MathSciNetCrossRef
14.
go back to reference C. Coley. Residual-based large eddy simulation of turbulent flows using divergence-conforming discretizations. PhD thesis, University of Colorado Boulder, 2017. C. Coley. Residual-based large eddy simulation of turbulent flows using divergence-conforming discretizations. PhD thesis, University of Colorado Boulder, 2017.
15.
go back to reference C. Coley, J. Benzaken, and J. A. Evans. A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems. Numerical Linear Algebra with Applications, 25:e2145, 2018.MathSciNetCrossRef C. Coley, J. Benzaken, and J. A. Evans. A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems. Numerical Linear Algebra with Applications, 25:e2145, 2018.MathSciNetCrossRef
16.
go back to reference C. Coley and J.A. Evans. Variational multiscale modeling with discontinuous subscales: Analysis and application to scalar transport. Meccanica, 53:1241–1269, 2018.MathSciNetCrossRef C. Coley and J.A. Evans. Variational multiscale modeling with discontinuous subscales: Analysis and application to scalar transport. Meccanica, 53:1241–1269, 2018.MathSciNetCrossRef
17.
go back to reference J. A. Cottrell. Isogeometric analysis and numerical modeling of the fine scales within the variational multiscale method. PhD thesis, University of Texas at Austin, 2007. J. A. Cottrell. Isogeometric analysis and numerical modeling of the fine scales within the variational multiscale method. PhD thesis, University of Texas at Austin, 2007.
18.
go back to reference J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley Publishing, 1st edition, 2009. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley Publishing, 1st edition, 2009.
19.
go back to reference J. A. Evans. Divergence-free B-spline discretizations for viscous incompressible flows. PhD thesis, The University of Texas at Austin, 2011. J. A. Evans. Divergence-free B-spline discretizations for viscous incompressible flows. PhD thesis, The University of Texas at Austin, 2011.
20.
go back to reference J. A. Evans and T. J. R. Hughes. Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem. Computational Mechanics, pages 1–8, 2012. J. A. Evans and T. J. R. Hughes. Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem. Computational Mechanics, pages 1–8, 2012.
21.
go back to reference J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the Darcy–Stokes–Brinkman equations. Mathematical Models and Methods in Applied Sciences, 23:671–741, 2013.MathSciNetCrossRef J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the Darcy–Stokes–Brinkman equations. Mathematical Models and Methods in Applied Sciences, 23:671–741, 2013.MathSciNetCrossRef
22.
go back to reference J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations. Mathematical Models and Methods in Applied Sciences, 23:1421–1478, 2013.MathSciNetCrossRef J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations. Mathematical Models and Methods in Applied Sciences, 23:1421–1478, 2013.MathSciNetCrossRef
23.
go back to reference J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations. Journal of Computational Physics, 241:141–167, 2013.MathSciNetCrossRef J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations. Journal of Computational Physics, 241:141–167, 2013.MathSciNetCrossRef
24.
go back to reference J. A. Evans and T. J. R. Hughes. Isogeometric compatible discretizations for viscous incompressible flow. In IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs, pages 155–193. Springer, 2016. J. A. Evans and T. J. R. Hughes. Isogeometric compatible discretizations for viscous incompressible flow. In IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs, pages 155–193. Springer, 2016.
25.
go back to reference R.S. Falk and M. Neilan. Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM Journal on Numerical Analysis, 51:1308–1326, 2013.MathSciNetCrossRef R.S. Falk and M. Neilan. Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM Journal on Numerical Analysis, 51:1308–1326, 2013.MathSciNetCrossRef
26.
go back to reference D. Fauconnier. Development of a dynamic finite difference method for large-eddy simulation. PhD thesis, Ghent University, 2008. D. Fauconnier. Development of a dynamic finite difference method for large-eddy simulation. PhD thesis, Ghent University, 2008.
27.
go back to reference F. Gaspar, Y. Notay, C. Oosterlee, and C. Rodrigo. A simple and efficient segregated smoother for the discrete Stokes equations. SIAM Journal on Scientific Computing, 36:A1187–A1206, 2014.MathSciNetCrossRef F. Gaspar, Y. Notay, C. Oosterlee, and C. Rodrigo. A simple and efficient segregated smoother for the discrete Stokes equations. SIAM Journal on Scientific Computing, 36:A1187–A1206, 2014.MathSciNetCrossRef
28.
go back to reference M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids, 3:1760–1765, 1991.CrossRef M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids, 3:1760–1765, 1991.CrossRef
29.
go back to reference I. Harari and T.J.R. Hughes. What are C and h?: Inequalities for the analysis and design of finite element methods. Computer Methods in Applied Mechanics and Engineering, 97:157–192, 1992.MathSciNetCrossRef I. Harari and T.J.R. Hughes. What are C and h?: Inequalities for the analysis and design of finite element methods. Computer Methods in Applied Mechanics and Engineering, 97:157–192, 1992.MathSciNetCrossRef
30.
go back to reference M. C. Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes. Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Computer Methods in Applied Mechanics and Engineering, 199:828–840, 2010.MathSciNetCrossRef M. C. Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes. Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Computer Methods in Applied Mechanics and Engineering, 199:828–840, 2010.MathSciNetCrossRef
31.
go back to reference T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 127:387–401, 1995.MathSciNetCrossRef T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 127:387–401, 1995.MathSciNetCrossRef
32.
go back to reference T. J. R. Hughes, G. R. Feijó, L. Mazzei, and J. B. Quincy. The variational multiscale method–a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166:3–24, 1998.MathSciNetCrossRef T. J. R. Hughes, G. R. Feijó, L. Mazzei, and J. B. Quincy. The variational multiscale method–a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166:3–24, 1998.MathSciNetCrossRef
33.
go back to reference T. J. R. Hughes, L. P. Franca, and M. Balestra. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Computer Methods in Applied Mechanics and Engineering, 59:85–99, 1986.MathSciNetCrossRef T. J. R. Hughes, L. P. Franca, and M. Balestra. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Computer Methods in Applied Mechanics and Engineering, 59:85–99, 1986.MathSciNetCrossRef
34.
go back to reference T. J. R. Hughes, L. Mazzei, and K. J. Jansen. Large eddy simulation and the variational multiscale method. Computing and Visualization Science, 3:47–59, 2000.CrossRef T. J. R. Hughes, L. Mazzei, and K. J. Jansen. Large eddy simulation and the variational multiscale method. Computing and Visualization Science, 3:47–59, 2000.CrossRef
35.
go back to reference T. J. R. Hughes and G. Sangalli. Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM Journal on Numerical Analysis, 45:539–557, 2007.MathSciNetCrossRef T. J. R. Hughes and G. Sangalli. Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM Journal on Numerical Analysis, 45:539–557, 2007.MathSciNetCrossRef
36.
go back to reference T.J.R. Hughes, G. Scovazzi, and L.P. Franca. Multiscale and stabilized methods. Encyclopedia of Computational Mechanics Second Edition, pages 1–64, 2018. T.J.R. Hughes, G. Scovazzi, and L.P. Franca. Multiscale and stabilized methods. Encyclopedia of Computational Mechanics Second Edition, pages 1–64, 2018.
37.
go back to reference J. C. R. Hunt, A. A. Wray, and P. Moin. Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research Proceedings of the Summer Program 1988, 1988. J. C. R. Hunt, A. A. Wray, and P. Moin. Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research Proceedings of the Summer Program 1988, 1988.
38.
go back to reference K. A. Johannessen, M. Kumar, and T. Kvamsdal. Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines. Computer Methods in Applied Mechanics and Engineering, 293:38–70, 2015.MathSciNetCrossRef K. A. Johannessen, M. Kumar, and T. Kvamsdal. Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines. Computer Methods in Applied Mechanics and Engineering, 293:38–70, 2015.MathSciNetCrossRef
39.
go back to reference D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, and T. J. R. Hughes. Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines. Computer Methods in Applied Mechanics and Engineering, 314:408–472, 2017.MathSciNetCrossRef D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, and T. J. R. Hughes. Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines. Computer Methods in Applied Mechanics and Engineering, 314:408–472, 2017.MathSciNetCrossRef
40.
go back to reference D. K. Lilly. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Manuscript 123, 1966. D. K. Lilly. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Manuscript 123, 1966.
41.
42.
go back to reference F. Nicoud, H. Baya Toda, O. Cabrit, S. Bose, and J. Lee. Using singular values to build a subgrid-scale model for large eddy simulations. Physics of Fluids, 23, 2011.CrossRef F. Nicoud, H. Baya Toda, O. Cabrit, S. Bose, and J. Lee. Using singular values to build a subgrid-scale model for large eddy simulations. Physics of Fluids, 23, 2011.CrossRef
43.
go back to reference F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Turbulence and Combustion, 62:183–200, 1999.CrossRef F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Turbulence and Combustion, 62:183–200, 1999.CrossRef
44.
go back to reference A. A Oberai, J. Liu, D. Sondak, and T. J. R. Hughes. A residual based eddy viscosity model for the large eddy simulation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 282:54–70, 2014.MathSciNetCrossRef A. A Oberai, J. Liu, D. Sondak, and T. J. R. Hughes. A residual based eddy viscosity model for the large eddy simulation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 282:54–70, 2014.MathSciNetCrossRef
45.
go back to reference S. B. Pope. Turbulent Flows. IOP Publishing, 2001. S. B. Pope. Turbulent Flows. IOP Publishing, 2001.
46.
go back to reference P. Raviart and J. Thomas. A mixed finite element method for second order elliptic problems. Mathematical aspects of finite element methods, pages 292–315, 1977. P. Raviart and J. Thomas. A mixed finite element method for second order elliptic problems. Mathematical aspects of finite element methods, pages 292–315, 1977.
47.
go back to reference A. F. Sarmiento, A. M. A. Cortes, D. A. Garcia, L. Dalcin, N. Collier, and V. M. Calo. PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces. Journal of Computational Science, 18:117–131, 2017.CrossRef A. F. Sarmiento, A. M. A. Cortes, D. A. Garcia, L. Dalcin, N. Collier, and V. M. Calo. PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces. Journal of Computational Science, 18:117–131, 2017.CrossRef
48.
go back to reference P. W. Schroeder and G. Lube. Pressure-robust analysis of divergence-free and conforming fem for evolutionary incompressible navier–stokes flows. Journal of Numerical Mathematics, 2017. P. W. Schroeder and G. Lube. Pressure-robust analysis of divergence-free and conforming fem for evolutionary incompressible navier–stokes flows. Journal of Numerical Mathematics, 2017.
49.
go back to reference F. Shakib, T. J. R Hughes, and Z. Johan. A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 89:141–219, 1991.MathSciNetCrossRef F. Shakib, T. J. R Hughes, and Z. Johan. A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 89:141–219, 1991.MathSciNetCrossRef
50.
go back to reference T. E. Tezduyar and Y. Osawa. Finite element stabilization parameters computed from element matrices and vectors. Computer Methods in Applied Mechanics and Engineering, 190:411–430, 2000.CrossRef T. E. Tezduyar and Y. Osawa. Finite element stabilization parameters computed from element matrices and vectors. Computer Methods in Applied Mechanics and Engineering, 190:411–430, 2000.CrossRef
51.
go back to reference T. M. van Opstal, J. Yan, C. Coley, J. A. Evans, T. Kvamsdal, and Y. Bazilevs. Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows. Computer Methods in Applied Mechanics and Engineering, 316:859–879, 2017.MathSciNetCrossRef T. M. van Opstal, J. Yan, C. Coley, J. A. Evans, T. Kvamsdal, and Y. Bazilevs. Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows. Computer Methods in Applied Mechanics and Engineering, 316:859–879, 2017.MathSciNetCrossRef
52.
go back to reference W. van Rees, A. Leonard, D. Pullin, and P. Koumoutsakos. A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. Journal of Computational Physics, 230:2794–2805, 2011.MathSciNetCrossRef W. van Rees, A. Leonard, D. Pullin, and P. Koumoutsakos. A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. Journal of Computational Physics, 230:2794–2805, 2011.MathSciNetCrossRef
53.
go back to reference S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. Journal of Computational Physics, 65:138–158, 1986.MathSciNetCrossRef S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. Journal of Computational Physics, 65:138–158, 1986.MathSciNetCrossRef
54.
go back to reference P. Vignal, A. Sarmiento, A. M. A. Côrtes, L. Dalcin, and V. M. Calo. Coupling Navier-Stokes and Cahn-Hilliard equations in a two-dimensional annular flow configuration. Procedia Computer Science, 51:934–943, 2015.CrossRef P. Vignal, A. Sarmiento, A. M. A. Côrtes, L. Dalcin, and V. M. Calo. Coupling Navier-Stokes and Cahn-Hilliard equations in a two-dimensional annular flow configuration. Procedia Computer Science, 51:934–943, 2015.CrossRef
55.
go back to reference A. W. Vreman. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids, 16:3670–3681, 2004.CrossRef A. W. Vreman. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids, 16:3670–3681, 2004.CrossRef
Metadata
Title
Residual-Based Large Eddy Simulation with Isogeometric Divergence-Conforming Discretizations
Authors
John A. Evans
Christopher Coley
Ryan M. Aronson
Corey L. Wetterer-Nelson
Yuri Bazilevs
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-96469-0_3

Premium Partners