Skip to main content
Top
Published in: Optical Memory and Neural Networks 1/2023

01-11-2023

Resonant Effects in Subwavelength Diffraction Gratings with Varying Period in the Case of Oblique Incidence

Authors: D. A. Bykov, E. A. Bezus, L. L. Doskolovich

Published in: Optical Memory and Neural Networks | Special Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Optical properties of a resonant diffraction grating with a period varying in the periodicity direction are studied at oblique incidence of light. Using rigorous numerical simulations based on the Fourier modal method, it is shown that in the case of relatively compact varying-period gratings, the period change rate must be taken into account, and the local periodic approximation commonly used for the description of such structures becomes inapplicable. Coupled-mode equations with varying parameters are obtained for the case of oblique incidence and solved analytically in terms of the complementary error function. The predictions of the developed coupled-mode theory appear to be in good agreement with the rigorous numerical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhou, W., Zhao, D., Shuai, Y.-C., Yang, H., Chuwongin, S., Chadha, A., Seo, J.-H., Wang, K.X., Liu, V., Ma, Z., and Fan, S., Progress in 2D photonic crystal Fano resonance photonics, Prog. Quantum Electron., 2014, vol. 38, no. 1, pp. 1–74.CrossRef Zhou, W., Zhao, D., Shuai, Y.-C., Yang, H., Chuwongin, S., Chadha, A., Seo, J.-H., Wang, K.X., Liu, V., Ma, Z., and Fan, S., Progress in 2D photonic crystal Fano resonance photonics, Prog. Quantum Electron., 2014, vol. 38, no. 1, pp. 1–74.CrossRef
2.
go back to reference Quaranta, G., Basset, G., Martin, O.J.F., and Gallinet, B., Recent advances in resonant waveguide gratings, Laser Photon. Rev., 2018, vol. 12, no. 9, 1800017.CrossRef Quaranta, G., Basset, G., Martin, O.J.F., and Gallinet, B., Recent advances in resonant waveguide gratings, Laser Photon. Rev., 2018, vol. 12, no. 9, 1800017.CrossRef
3.
go back to reference Soloviev V.S., Timoshenkov, S.P, Timoshenkov, A.S., Vinogradov, A.I., Kondratiev, N.M., and Raschepkina, N.A., Modeling the input of radiation into plane linear waveguides using diffraction gratings for a new technology for the manufacture of waveguide systems, Comput. Opt., 2020, vol. 44, no. 6, pp. 917–922.CrossRef Soloviev V.S., Timoshenkov, S.P, Timoshenkov, A.S., Vinogradov, A.I., Kondratiev, N.M., and Raschepkina, N.A., Modeling the input of radiation into plane linear waveguides using diffraction gratings for a new technology for the manufacture of waveguide systems, Comput. Opt., 2020, vol. 44, no. 6, pp. 917–922.CrossRef
4.
go back to reference Kotlyar, V.V., Stafeev, S.S., O’Faolain, L., and Kotlyar, M.V., High numerical aperture metalens for the formation of energy backflow, Comput. Opt., 2020, vol. 44, no. 5, pp. 691–698.CrossRef Kotlyar, V.V., Stafeev, S.S., O’Faolain, L., and Kotlyar, M.V., High numerical aperture metalens for the formation of energy backflow, Comput. Opt., 2020, vol. 44, no. 5, pp. 691–698.CrossRef
5.
go back to reference Emadi, A., Wu, H., de Graaf, G., and Wolffenbuttel, R., Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter, Opt. Express, 2012, vol. 20, no. 1, pp. 489–507.CrossRef Emadi, A., Wu, H., de Graaf, G., and Wolffenbuttel, R., Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter, Opt. Express, 2012, vol. 20, no. 1, pp. 489–507.CrossRef
6.
go back to reference Qian, L., Zhang, D., Tao, C., Hong, R, and Zhuang, S., Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching, Opt. Lett., 2016, vol. 41, no. 5, pp. 982–985.CrossRef Qian, L., Zhang, D., Tao, C., Hong, R, and Zhuang, S., Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching, Opt. Lett., 2016, vol. 41, no. 5, pp. 982–985.CrossRef
7.
go back to reference Qian, L., Wang, K., and Han, C., Tunable filter with varied-line-spacing grating fabricated using holographic recording, IEEE Photon. Technol. Lett., 2017, vol. 29, no. 11, pp. 925–928.CrossRef Qian, L., Wang, K., and Han, C., Tunable filter with varied-line-spacing grating fabricated using holographic recording, IEEE Photon. Technol. Lett., 2017, vol. 29, no. 11, pp. 925–928.CrossRef
8.
go back to reference Hsiung, C.-T. and Huang, C.-S., Refractive index sensor based on a gradient grating period guided-mode resonance, IEEE Photon. Technol. Lett., 2019, vol. 31, no. 3, pp. 253–256.CrossRef Hsiung, C.-T. and Huang, C.-S., Refractive index sensor based on a gradient grating period guided-mode resonance, IEEE Photon. Technol. Lett., 2019, vol. 31, no. 3, pp. 253–256.CrossRef
9.
go back to reference Triggs, G.J., Wang, Y., Reardon, C.P., Fischer, M., Evans, G.J.O., and Krauss, T.F., Chirped guided-mode resonance biosensor, Optica, 2017, vol. 4, no. 2, pp. 229–234.CrossRef Triggs, G.J., Wang, Y., Reardon, C.P., Fischer, M., Evans, G.J.O., and Krauss, T.F., Chirped guided-mode resonance biosensor, Optica, 2017, vol. 4, no. 2, pp. 229–234.CrossRef
10.
go back to reference Wang, Y.-C., Jang, W-Y., and Huang, C.-S., Lightweight torque sensor based on a gradient grating period guided-mode resonance filter, IEEE Sens. J., 2019, vol. 19, no. 16, pp. 6610–6617.CrossRef Wang, Y.-C., Jang, W-Y., and Huang, C.-S., Lightweight torque sensor based on a gradient grating period guided-mode resonance filter, IEEE Sens. J., 2019, vol. 19, no. 16, pp. 6610–6617.CrossRef
11.
go back to reference Moharam, M.G., Grann, E.B., Pommet, D.A., and Gaylord, T.K., Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, J. Opt. Soc. Am. A, 1995, vol. 12, no. 5, pp. 1068–1076.CrossRef Moharam, M.G., Grann, E.B., Pommet, D.A., and Gaylord, T.K., Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, J. Opt. Soc. Am. A, 1995, vol. 12, no. 5, pp. 1068–1076.CrossRef
12.
go back to reference Nesterenko, D.V., Hayashi, S., and Soifer, V., Ab initio spatial coupled-mode theory of Fano resonances in optical responses of multilayer interference resonators, Phys. Rev. A, 2022, vol. 106, no. 2, 023507.MathSciNetCrossRef Nesterenko, D.V., Hayashi, S., and Soifer, V., Ab initio spatial coupled-mode theory of Fano resonances in optical responses of multilayer interference resonators, Phys. Rev. A, 2022, vol. 106, no. 2, 023507.MathSciNetCrossRef
13.
go back to reference Haus, H.A., Waves and Fields in Optoelectronics, Englewood Cliffs: Prentice-Hall, 1984. Haus, H.A., Waves and Fields in Optoelectronics, Englewood Cliffs: Prentice-Hall, 1984.
14.
go back to reference Nesterenko, D.V., Resonance characteristics of transmissive optical filters based on metal/dielectric/metal structures, Comput. Opt., 2020, vol. 44, no. 2, pp. 219–228.CrossRef Nesterenko, D.V., Resonance characteristics of transmissive optical filters based on metal/dielectric/metal structures, Comput. Opt., 2020, vol. 44, no. 2, pp. 219–228.CrossRef
15.
go back to reference Bykov, D.A., Bezus, E.A., Morozov A.A., Podlipnov, V.V., and Doskolovich, L.L., Optical properties of guided-mode resonant gratings with linearly varying period, Phys. Rev. A, 2022, vol. 106, no. 5, 053524.CrossRef Bykov, D.A., Bezus, E.A., Morozov A.A., Podlipnov, V.V., and Doskolovich, L.L., Optical properties of guided-mode resonant gratings with linearly varying period, Phys. Rev. A, 2022, vol. 106, no. 5, 053524.CrossRef
Metadata
Title
Resonant Effects in Subwavelength Diffraction Gratings with Varying Period in the Case of Oblique Incidence
Authors
D. A. Bykov
E. A. Bezus
L. L. Doskolovich
Publication date
01-11-2023
Publisher
Pleiades Publishing
Published in
Optical Memory and Neural Networks / Issue Special Issue 1/2023
Print ISSN: 1060-992X
Electronic ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X23050053

Other articles of this Special Issue 1/2023

Optical Memory and Neural Networks 1/2023 Go to the issue

Premium Partner